Pavement Preservation Strategy Selection

By R. Gary Hicks and Ding Cheng California Pavement Preservation (CP2) Center California State University, Chico Prepared for NCPP Nashville TN

August 2012

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

CP2C Background

- Caltrans started Center
 - Jan 2007
- Functions (Tasks)
 - Define and quantify benefits of preservation
 - Training and education
 - Improve PP performance
 - Innovation and tech transfer
 - Technical assistance
 - Promote effective PP

Treatment Selection is one of the tasks

What is Treatment Selection?

A guide to assist maintenance personnel in making better and more informed decisions in selecting and applying maintenance treatments

In other words...

What do we do with this?

Treatment Selection Based on Pavement Condition

Why Pavement Preservation?

- Sustain the built environment
- Conserve natural resources
 - Aggregates
 - Asphalt
 - Cement
- Reduce dependency on petroleum products
- Reduce carbon footprint

Issues Treatment Selection Addresses

- Will the treatment address the distresses present? (i.e., Will it work?)
- Can the required preparation for the treatment be carried out?
- Is the treatment cost effective?
- Will the treatment be performed before the situation being addressed changes?

Selecting Treatment Process

- Assess existing pavement conditions
- Determine the feasible treatment options
- Analyze and compare the feasible options

Assess Conditions

- Assess existing pavement conditions
 - Conduct site inspection either manually or automatically
 - Review project information
 - Perform testing on the existing pavement, as conditions require
- Define the performance requirements for the treatment, such as weather, traffic, treatment life

Fatigue (Alligator) Cracking

LOW

MODERATE

HIGH

Load Related, HMA Thickness

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Potholes

Environmental + Load

10

Ruts in Wheel Paths Depressions

Load + Environmental Typically Upper 4 in.

Support Issue Typically Full Depth

0" 0;5" t 12"

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Transverse and Block Cracking Thermal Cracking Block Cracking

Environmental + Age

Environmental Carly in Pave. Life

12

Polishing and Raveling

Polished Aggregate

13

Pumping

Bleeding/Flushing

Materials + Environmental + Traffic

Moisture + Traffic Materials?

14

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Construction Issues

Bump

Delamination

Shoving

Crack Sealant?

Loss of Bond (Tack Coat) Material Issue?

Preservation Treatments Used in CA

- Crack sealing
- Fog/Rejuvenating Seals
- Chip seals
- Slurry seals
- Scrub seals
- Microsurfacing

- Open graded friction course
- RHMA-O, RHMA-O-HB
- PBA-G
- BWC
- BWC-Rubber
- Thin HMA Overlays

Non-Structural Activities

Factors Affecting Treatment Selection

- Pavement age, condition
- Climate
- Traffic levels, expected future plans
- Available funding
- Agency policy

Caltrans Treatment Selection Matrix

- Covers all the major treatment types currently used by Caltrans and allows for use of future strategies
- Treatment selection is a complex, yet important procedure to ensure a optimum pavement treatment
- Affected by pavement conditions, traffic volumes, climate, and more

GENERAL GUIDELINES FOR EFFECTIVE MAINTENANCE TREATMENT SELECTION

Parameters							reatment Life Based On Traffic Volumes & Pavement (ent Cor	dition																				
				Rut	ting		Cl	imate		Tra	ffic Vo	olumes								1	Freatmen	t Costs				adt <	5000	adi	>5000<	30,000	á	dt >30,0	000
											8								ste	Cos	t: \$/SQ Y	D (Tre	atment	Only)				Paver	nent Co	ndition			
Preventive Treatments	Raveling	Oxidation	Bleeding	<1/2"	>1/2"	Desert	Valley	Coastal	Mountains	adt < 5000	adt>5000<30,0	adt >30,000	Night	Cold	Stop Points	urban	Rural	High Snow Plov	Cost per lane-rr (Total Project Co includes traffic control)	Large Projects	Medium Projects	Small Projects	Addtl Premium for night work	Addtl Premium for Short Work Periods or Work	Good	Fair	Poor	Good	Fair	Poor	Good	Fair	Poor
Crack/Joint Seal																																	
Emulsion	Ν	Ν	Ν	Ν	N	G	Ð	G	G	G	G	G	Ν	Ν	G	G	G	G	8,000	0.50-0.65	0.60-0.75	5).70-0.8	0.15-0.	2+0.60-1.0	2 to 8	2 to 6	1 to 4	2 to 7	2 to 5	1 to 4	2 to 6	2 to 4	1 to 4
Modified (Rubber)	Ν	Ν	Ν	Ν	Ν	G	G	G	G	G	G	G	G	G	G	G	G	G	8,000	0.55-0.70	0.65-0.80	0.75-0.9	0.15-0.	2+0.60-1.0	<mark>5 to 9</mark>	3 to 7	N	5 to 8	3 to 6	Ν	3 to 7	2 to 5	Ν
Seal Coats																																	
Fog Seal (See note 1)	F	G	Ν	Ν	N	G	G	G	G	F	F	Ν	Ν	Ρ	F	G	G	F	13,000	0.15-0.30	0.15-0.30	0.15-0.3	+0.05	+0.10	1 to 3	Ν	Ν	1 to 2	Ν	Ν	1 to 2	Ν	Ν
Rejuvenator (See note 1)	G	G	Ν	Ν	N	G	G	G	G	G	F	Ν	Ν	Ν	Ν	G	G	F	15,000	0.20-0.50	0.20-0.50	0.20-0.5	+0.10	+0.20	3 to 6	3 to 4	2 to 3	2 to 4	2 to 3	2 to 3	2 to 4	2 to 3	1 to 3
Scrub Seal (See Note 4)	G	G	Ν	Ν	Ν	G	G	G	G	G	F	Ν	Ν	G	Ν	F	G	Р	17,000	2.15	2.15	2.15	N/A	N/A	4 to 7	3 to 6	3 to 4	3 to 6	2 to 4	2 to 3	2 to 3	2 to 3	2 to 3
Slurry Seals																																	
Type II (See note 1)	F	G	Ν	Ν	N	G	G	G	F	G	G	G	Ν	Ν	G	G	G	Р	23,000	1.60-2.20	1.75-2.40	.90-2.6	N/A	+0.30	B to 10	4 to 6	2 to 4	7 to 10	4 to 6	1 to 4	7 to 10	3 to 5	1 to 3
Type III	G	G	Ν	F	N	G	G	G	F	G	G	G	Ν	Ν	G	G	G	Р	24,000	1.60-2.20	1.75-2.40	.90-2.6	N/A	+0.30	B to 10	4 to 6	2 to 4	7 to 10	4 to 6	1 to 4	7 to 10	3 to 5	1 to 3
REAS	G	G	Ν	F	N	G	G	G	F	G	G	G	Ν	Ν	G	G	G	Р		1.20-1.80	1.20-1.80	.20-1.8	N/A	+0.30	8 to 10	5 to7	N	7 to 10	5 to 7	N	7 to 9	5 to 7	Ν
Microsurfacing																																	
Type II	G	G	Ν	G	F	G	G	G	G	G	G	G	G	Ν	G	G	G	Р	31,000	2.00-2.80	2.10-2.90	2.25-3.0	0.10-0.	2 N/A	8 to 12	5 to 8	2 to 4	7 to 12	5 to 7	2 to 4	7 to 10	3 to 6	1 to 4
Type III	G	G	Ν	G	G	G	G	G	G	G	G	G	G	Ν	G	G	G	Р	31,000	2.00-2.80	2.10-2.90	2.25-3.0	0.10-0.	2 N/A	8 to 12	5 to 8	2 to 4	7 to 12	5 to 7	2 to 4	7 to 10	3 to 6	1 to 4
Chip Seals																																	
PME - Med. Fine (See Note 4)	G	G	N	F	N	G	G	F	F	G	G	Ν	N	N	Р	Р	G	Р	27,000	1.80-2.00	2.25-2.75	5.00-3.5	N/A	+0.50-1.0	6 to 12	5 to 8	2 to 4	7 to 12	5 to 7	2 to 4	7 to 10	3 to 6	1 to 4
PME - Medium (See Note 4)	G	G	N	F	N	G	G	F	F	G	N	Ν	Ν	N	Р	Р	G	F	27,000	1.80-2.00	2.25-2.75	5.00-3.5	N/A	+0.50-1.0	B to 12	5 to 8	2 to 4	7 to 12	5 to 7	2 to 4	7 to 10	3 to 6	1 to 4
PMA - Medium (See Note 3.)	G	G	Ν	F	N	G	G	G	G	G	G	Ν	Ν	G	Р	Р	G	F	24,000				N/A		8 to 12	6 to 9	4 to 6	7 to 12	5 to 7	4 to 6	7 to 10	4 to 6	3 to 5
PMA - Coarse (See Note 3.)	G	G	Ν	F	N	G	G	G	G	G	Ν	Ν	Ν	G	Р	Р	G	G	24,000				N/A		8 to 12	6 to 9	4 to 6	7 to 12	5 to 7	4 to 6	7 to 10	4 to 6	3 to 5
AR - Medium	G	G	Ν	F	N	G	G	G	G	G	G	Ν	G	G	Р	Р	G	F	65,000	3.75-4.55	4.00-4.75	.25-5.0	N/A	+0.50-1.0	B to 12	6 to 9	4 to 6	7 to 12	5 to 7	4 to 6	7 to 10	4 to 6	3 to 5
AR - Coarse	G	G	Ν	F	N	G	G	G	G	G	Ν	Ν	G	G	Р	Р	G	G	65,000	3.75-4.55	4.00-4.75	.25-5.0	N/A	+0.50-1.0	B to 12	6 to 9	4 to 6	7 to 12	5 to 7	4 to 6	7 to 10	4 to 6	3 to 5
Cape Seals																																	
Slurry	G	G	N	F	N	G	G	G	G	G	G	G	N	N	G	G	G	Р							9 to 14	7 to 10) 5 to 7	8 to 12	6 to 8	5 to 7	8 to 10	5 to 7	4 to 6
Micro	G	G	N	G	F	G	G	G	G	G	G	G	Ν	Ν	G	G	G	Р							10 to 1	8 to 10	5 to 8	8 to 12	6 to 8	5 to 8	8 to 10	5 to 7	4 to 6
PM Alternative to a Seal Coat > 30.000 ADT																																	
PBA-0	G	G	Р	F	N	G	G	G	G	G	G	G	F	F	G	G	G	Р	65.000	8-12	8-14	10-16		+1.20-4.0	B to 14	6 to 12	2 4 to 7	8 to 12	6 to 10	4 to 5	8 to 10	5 to 7	3 to 5
RAC-O	G	G	Р	F	N	G	G	G	G	G	G	G	F	Р	G	G	G	Р	60,000	10-14	10-14			+1.50-3.5	B to 14	5 to 12	2 4 to 7	8 to 12	5 to 10	4 to 5	8 to 10	5 to 9	3 to 5
RAC-O High Binder (HB)	G	G	Р	F	N	G	G	G	G	G	G	G	F	Р	G	G	G	Р	65,000	10-14	10-14			+1.50-3.5	B to 15	6 to 12	2 4 to 8	10 to 12	6 to 12	4 to 6	8 to 12	5 to 10	4 to 5
RAC-G	G	G	P	G	F	G	G	G	G	G	G	G	F	F	G	G	G	G	65,000	10-14	10-14			+1.50-3.5	B to 14	6 to 10	0 4 to 6	8 to 12	5 to 9	4 to 5	8 to 10	5 to 7	3 to 5
PBA-G	G	G	Р	P	N	G	G	G	G	G	G	G	F	F	G	G	G	G	60.000	8-12	8-14	10-16		+1.20-4.0	B to 14	6 to 12	2 4 to 7	8 to 12	6 to 10	4 to 5	8 to 10	5 to 7	3 to 5
Thin Bonded Wearing Course (BW/C)	G	G	P	F	N	G	G	G	G	G	G	G	F	F	G	G	G	G	85,000	10-14	10-14			+1 50-3 5	B to 12	5 to 10	4 to 6	8 to 10	5 to 9	4 to 5	8 to 10	5 to 9	3 to 4
Thin Bonded Wearing Course Rubber (BWC-RAC O/	G	G	P	F	N	G	G	G	G	G	G	G	F	F	G	G	G	G	85,000	10-14	10-14			+1.50-3.5	B to 12	5 to 10	4 to 6	8 to 10	5 to 9	4 to 5	8 to 10	5 to 9	3 to 4
Maintenance Treatments	-	-				-	-	-	-	-	-	-			-	-	-																
Thin Lifts Overlays							_				_																						
Conventional	G	G	Р	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	45.000	8-12	8-14	10-16		+1.20-4.0	B to 12	5 to 10	4 to 6	8 to 10	6 to 9	3 to 6	6 to 8	4 to 6	1 to 3
PBA	G	G	P	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	60,000	8-12	8-14	10-16		+1 20-4 0	B to 14	6 to 12	2 4 to 7	8 to 12	6 to 10	4 to 5	8 to 10	5 to 7	3 to 5
RAC	G	G	P	G	F	G	G	G	G	G	G	G	F	F	G	G	G	G	65.000	10-14	10-14	10.0		+1.50-3.5	B to 14	5 to 12	2 4 to 7	8 to 12	5 to 10	4 to 5	8 to 10	5 to 9	3 to 5
Discuto				N		Ğ	6	6	6	6	6	6	· C		6	6	6	6	125 000	10.11		1		1.000.010	1.0 1-	2.012		0.012	2 10 10	1.00	2.0.0		2.00
Diguais	Г Г			IN	0		G	G	9	0	9	9	9	G	9	G	9	G	120,000	1		1	1	1	T								

Maintenance Selection on Cracks - Overview

	G	ENERAL GU	JIDELINES	FOR	EFFECTIVE	MAINIENA	ANCE	IREAIME	NIS ON CR	ACKS					
								g							
		Alligato	or "A"	-	Alligato	or "B"		Alligato	or "C"	Longi	itudinal/Trans	verse	<u> </u>	Edge	
Criteria	Low	Medium	High	Low	Medium	High	Low	Medium	High	Low	Medium	High	Low	Medium	High
Width	<1/4"	>1/4", <1/2"	>1/2"	<1/4"	>1/4", <1/2"	>1/2"	<1/4"	>1/4", <1/2"	>1/2"	<1/4"	>1/4", <1/2"	>1/2"	No	>0%, <10%	>10%
	or	or	or	or	or	or	or	or	or				Material	Material	Material
Area	<10%	>10%, <20%	>20%, <30%	<10%	>10%, <20%	>20%, <30%	<10%	>10%, <20%	>20%, <30%				Loss	Loss	Loss
Preventive Treatment													┢───┤		
Crack/Joint Seal (See Note 5)															5
Emulsion	N	F	N	N	P	N	N	N	N	G	F	N	G	P	P
Modified (Rubber)	N	G	P	N	P	N	N _	P	N	P	G	F	Р	P	P
Fog Seal (See note 1)	G	Р	N	G	N	N	F	N	N	-	N	N		<u>Р</u>	Р
Rejuvenator (See note 1)	G	N	N	G	N	N	F	N	N	-	N	N		Р	Р
Scrub Seals	G	F	N	G	F (See Note 4)	N	G	P (See Note 4)	N	F	Р	Р	F	P	Р
Slurry Seals															<u> </u>
Type II (See note 1)	F	N	N	F	N	N	F	N	N	F	N	N	F	P	Р
Туре III	F	Р	N	F	Р	N	F	Р	N	F	Р	N	F	P	Р
licrosurfacing															
Type II (See note 2)	G	N	N	F	Р	N	F	Р	Ν	F	N	N	Р	P	Р
Туре III	G	Р	N	F	Р	N	F	Р	N	F	N	N	Р	P	Р
Chip Seal															
PME - Med. Fine	G	Р	N	G	F (See Note 4)	N	G	P (See Note 4)	N	Р	Р	Ν	Р	Р	Р
PME - Medium	G	Р	N	G	F (See Note 4)	N	G	P (See Note 4)	Ν	Р	Р	Ν	Р	Р	Р
PMA - Medium (See Note 3.)	G	Р	Р	G	F (See Note 4)	Р	G	P (See Note 4)	Р	Р	Р	Ν	Р	Р	Р
PMA - Coarse (See Note 3.)	G	Р	Р	G	F (See Note 4)	Р	G	P (See Note 4)	Р	Р	Р	Ν	Р	Р	Р
AR - Medium	G	G	F	G	G	F	G	F (See Note 4)	F	Р	F	F	Р	Р	Р
AR - Coarse	G	G	F	G	G	F	G	F (See Note 4)	F	Р	F	F	Р	Р	Р
PM Alternative > 30,000 ADT															
PBA OGAC	G	F	N	G	F (See Note 4)	N	G	F (See Note 4)	Ν	G	F	Р	Р	Р	Р
RAC-O	G	G	F	G	G	F (See Note 4)	G	G	F	G	F	Р	Р	Р	Р
RAC-O High Binder (HB)	G	G	F	G	G	F (See Note 4)	G	G	F	G	F	Р	F	F	F
RAC-G	G	G	G	G	G	F (See Note 4)	G	G	G	G	F	Р	G	G	G
Thin Bonded Wearing Course Rubber (BWCR)	G				1	1		1			1		Р	Р	Р
Maintenance Treatments															
Conventional	G												N	F	F
РВА	G	Not a	adain										N	F	F
RAC	G												N	F	F
BWC															
Digouts	Ν	IN		IN			IN	IN					N	F	G

Analyze and Compare

- Analyze and Compare the Feasible Options
 - Several treatments may be feasible
 - Cost and life of the treatments vary
 - Effect of the treatment on the life extension of the existing pavement
 - Other factors to consider: cost effectiveness, treatment timing, traffic level, and constructability

Estimated Life of Treatments

Treatment	Good Condition (PCI=80)	Fair Condition (PCI=60)	Poor Condition (PCI=40)
Fog Seal	3 - 5	1 - 3	1 - 2
Chip Seal	7 - 10	3 - 5	1 - 3
Slurry Seal	7 - 10	3 - 5	1 - 3
Micro- surfacing	8 - 12	5 - 7	2 - 4
Thin HMA	10 - 12	5 - 7	2 - 4

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Select Best Treatment

- Cost Effectiveness
 - Equivalent Annual Cost
 - Life Cycle Cost Analysis
- Selection of Maintenance Treatments
 - Performance and constructability
 - Customer satisfaction
 - Ranking of selected treatments by rating overall importance

Economics of Preservation

- Project Size
 - Small
 - 1 to 2 days of work
 - Medium
 - 3 to 5 days of work
 - Large
 - + 1 week

Other Options

- Other preservation treatments
 - Recycling
 - Cold in-place
 - Hot in-place
 - Full depth recycling

DRIVING THE

CHANGE

FOR

Interlayers

- Interlayers
 - Overlays
 - Chip over fabric

MTAG Flexible Pavement Treatment Selection Software Is Now Online

http://www.cp2info.org/TreatmentSelection2.0/

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

MTAG – Identify Non-crack Related Distresses and Conditions

<u>Distresses</u>	<u>Climate</u>	Traffic Volumes	Locations
□ Raveling	Desert	○ ADT < 5000	Stop Points
Oxidation	□Valley	○5000 < ADT < 30,000	□Urban
Bleeding	Coastal	OADT > 30,000	Rural
	□Mountains		Snow Plow Area
Rutting		<u>Others</u>	
O < 1/2"		□Night Work	
○ > 1/2"		Cold Weather Work	

MTAG – Identify Crack Related Distresses

Alligator Cracking A	Alligator C	racking B	Alligator Cracking C				
O Low: (Width<1/4)	⊙ Low: (Wid	ith<1/4)	● Low: (Width<1/4)				
or (Area<10%)	or (Ar	ea<10%)	or (Area<10%)				
⊙ Medium: (1/4 <width<1 2)<="" p=""></width<1>	O Medium: ((1/4 <width<1 2)<="" th=""><th colspan="5">O Medium: (1/4<width<1 2)<="" th=""></width<1></th></width<1>	O Medium: (1/4 <width<1 2)<="" th=""></width<1>				
or (10% <area<20%)< th=""><th>or</th><th>(10%<area<20%)< th=""><th>or (10%<area<20%)< th=""></area<20%)<></th></area<20%)<></th></area<20%)<>	or	(10% <area<20%)< th=""><th>or (10%<area<20%)< th=""></area<20%)<></th></area<20%)<>	or (10% <area<20%)< th=""></area<20%)<>				
O High: (Width>1/2)	O High: (Wie	dth>1/2)	○High: (Width>1/2)				
or (20% <area<30%)< th=""><th>or (20</th><th>%<area<30%)< th=""><th>or (20%<area<30%)< th=""></area<30%)<></th></area<30%)<></th></area<30%)<>	or (20	% <area<30%)< th=""><th>or (20%<area<30%)< th=""></area<30%)<></th></area<30%)<>	or (20% <area<30%)< th=""></area<30%)<>				
Longitudinal/Traverse Cr	acking	Edge Cracking					
○ Low: (Width<1/4)		O Low: No Material Loss					
O Medium: (1/4 <width< th=""><th>h<1/2)</th><th colspan="5">OMedium: Material Loss: (>0%,<10%)</th></width<>	h<1/2)	OMedium: Material Loss: (>0%,<10%)					
O High: (Width>1/2)		OHigh: Material Loss: (>10%)					

Generate Preliminarily Selected Treatment List

Chip Seals: AR - Medium Chip Seals: AR - Coarse PM Alternative: RAC-O PM Alternative: RAC-O High Binder (HB) PM Alternative: RAC-G PM Alternative: Thin Bonded Wearing Course (BWC) PM Alternative: Thin Bonded Wearing Course Rubber (BW Thin Lifts Overlays: Conventional Thin Lifts Overlays: PBA Thin Lifts Overlays: RAC Double Chips Over Fibric

Further Detailed Comparison Methods

- The framework of Cost Analysis and Expert System have been developed.
- Knowledge and data will be input into the system
 so that ranking of alternatives can be derived.

Alaska Treatment Selection Program

- Integrated with Alaska DOT&PF Pavement Preservation Database, which shows project location with Google Map.
- Developed strategy selection matrixes includes common pavement distresses as well as cold region special conditions.
- Contained treatments not only preservation but also rehabilitation.

Alaska DOT&PF Treatment Selection Online Program

- Long term performance tracking
- Ranking treatment based on life cycle cost analysis
- Website:

http://sites.google.com/site/alaskap2/

Future Plans

- Enhance Pavement Preservation Treatment
 Database
- Improve Estimates of Treatment Life and Life Extension
- Improve Strategy Selection Process using Expert Systems

Summary

- Right treatment at the right time on the right pavement
- Treatments have different service lives
 - Better life when used earlier
 - Little life extension when used with 25% cracking
- Cost savings with increasing size of project
- Future plans

QUESTIONS?

Contact R. Gary Hicks CP2 Center rghicks@csuchico.edu