Dowel-Bar Retrofit Using Polyester Polymer Concrete

Shakir Shatnawi, Ph.D., P.E.
President, SHATEC ENGINEERING CONSULTANTS, LLC

Former Caltrans State Pavement Engineer
El Dorado Hills, California
ssehatnawi@shatec.net
916-990-6488
Presentation Outline

- Description
- Project Selection
- Nationwide Usage
- Typical Distress
- California Experience
- Key Parameters
- Cementitious Grouts
- Polyester Polymer Concrete
- Comparisons
- US 50
- Final Remarks
Description
457 mm dowel bar centered on joint, ±13 mm
38 mm Ø for T ≥ 250 mm
32 mm Ø for T < 250 mm

6 mm foam core board filler material to maintain joint

Saw cut/route 35 mm deep, 13 mm wide slot along joint. Seal with 16 mm foam backer rod and silicone sealant as shown on Standard Plan A45A.

Expansion cap - allow 6 mm expansion (typ)

Dowel bar support chairs located to maintain bar alignment

500 mm, min length of flat bottom
Description

Core showing grout and dowel

Improving load transfer
Project Selection

- Low Load Transfer: <70%
- Faulting: >0.1 inch
- Cracking: <10%
- Structurally Adequate
Nationwide Usage

>5 Million

Bar chart showing the total number of dowels placed (in thousands) for each state. The states are listed from left to right as: Iowa, Tennessee, Indiana, Mississippi, Pennsylvania, Arkansas, Missouri, Nevada, Texas, Ohio, Michigan, Utah, Idaho, Minnesota, California, South Dakota, Wyoming, Wisconsin, Nebraska, Washington, North Dakota, Kansas, Oklahoma.
Typical Distress

Studded Tire Wear Backfill Cracking
Typical Distress

Backfill Spalling

Backfill Debonding
Typical Distress

Poor Consolidation Foam Board Misalignment
California Experience

- Between 1950 and 2000 California did not require dowel bars in JPCP.
- 1998-Colfax, CA was the First DBR Pilot Project. Avg. LTE increased from 30% to 82%. Backfill is still in good condition.
California Experience

- 2001 SR 101-Ukiah DBR Test Sections. LTE increased from 49.2% to 85.3% or higher after 10 months in service.
- 2001 SR 14-Palmdale. LTB increased to above 80%. Several locations experienced failure of the bond between the backfill and the existing concrete.
California Experience
-2005 Investigation

- Overall, DBR is an effective method for improving joint load transfer efficiency across transverse joints and cracks.
- Distress on various statewide projects was noticed.
- Debonding and deleterious material were found between backfill and existing pavement, and poor consolidation.
California Experience
-2005 Investigation

- Considerable variation in the performance of the backfill material.
- In the same project, and sometime at the same transverse joint, not all slots exhibited backfill material distress.
- Improper construction techniques.
California Experience
Summary of Issues

- Poor consolidation is the most common problem. Under-vibration results in honeycombing.
 - No requirement for proper consolidation. Difficulty of backfill to flow below the dowel.
 - Excessive vibration-misalignment and non-uniform strength.
- Inadequate Adhesion to existing pavement.
Key Parameters

- Proper consolidation to prevent honeycombing and non-uniform strength
- Adequate compressive strength to sustain Dowel bearing
- Adequate tensile strength to resist cracking
- Adequate Bond strength to ensure a durable slot and monolithic behavior
Key Parameters
- Effect of Strength & Consolidation

MN Minne-ALF Experiment (2001)
9000 Single Load Cycles

Slabs 2&3: 4000 PSI C. Strength
Slabs 4&7: 5000 PSI C. Strength
Slab 4 is poorly Consolidated

LTE=70%: Slab 7
Nf=10,000,000,000 Cycles (<1000 times)

Slabs 2&3: Nf=10,000,000,000 Cycles (<1000 times)

Log Load Cycles Applied

LTE (%)
Key Parameters

- Effect of Strength and Consolidation

Minne-ALF Experiment - Embacher et al. (2001)

9000 Single Load Cycles

- Slabs 2&3: 4000 PSI C. Strength
- Slabs 4&7: 5000 PSI C. Strength
- Slab 4 is poorly Consolidated

Graph showing differential deflection over log load cycles applied.
Key Parameters
- Effect of Strength and Consolidation

- Minnesota Test Sections-Trunk Highway TH 23 near Mora, Minnesota built 1998
 - 1999 Investigation-Majority of the slots using lower strength backfill material had shrinkage cracks along one of the slot edges at the interface indicating debonding. However, the higher strength backfill material showed very little cracking along the edges of the slots.
Cementitious Grouts

Specifications

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 3 hours, psi</td>
<td>California Test 551</td>
<td>3,000 min.</td>
</tr>
<tr>
<td>at 24 hours, psi</td>
<td>California Test 551</td>
<td>5,000 min.</td>
</tr>
<tr>
<td>Flexure Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 24 hours, psi</td>
<td>California Test 551</td>
<td>500 min.</td>
</tr>
<tr>
<td>Bond Strength: at 24 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSD Concrete, psi</td>
<td>California Test 551</td>
<td>300 min.</td>
</tr>
<tr>
<td>Dry Concrete, psi</td>
<td>California Test 551</td>
<td>400 min.</td>
</tr>
<tr>
<td>Water Absorption, %</td>
<td>California Test 551</td>
<td>10 max.</td>
</tr>
<tr>
<td>Abrasion Resistance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 24 hours, ounces</td>
<td>California Test 550</td>
<td>1 max.</td>
</tr>
<tr>
<td>Drying Shrinkage at 4 days, %</td>
<td>ASTM Designation: C 596</td>
<td>0.13 max.</td>
</tr>
<tr>
<td>Soluble Chlorides by weight, %</td>
<td>California Test 422</td>
<td>0.05 max.</td>
</tr>
<tr>
<td>Water Soluble Sulfates by weight, %</td>
<td>California Test 417</td>
<td>0.25 max.</td>
</tr>
</tbody>
</table>
Polyester Polymer Concrete

- Successfully used in repairing spalls, rut fills and bridge deck overlays
- High strength
- Strong bond characteristics
- High flowability
- High toughness
- Fast curing
- Impact and abrasion resistance
- High resiliency
- Age hardening resistance
- Water impermeability and de-icing salts
- Forgiving
- Creep characteristics - Less shrinkage cracking
Polyester Polymer Concrete

Pertinent Specifications

<table>
<thead>
<tr>
<th>Test</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D38</td>
<td>Grout Tensile Strength</td>
<td>2500 PSI</td>
</tr>
<tr>
<td>CT 551</td>
<td>Bond Strength (SSD)</td>
<td>500 PSI</td>
</tr>
<tr>
<td>ASTM D2196</td>
<td>Viscosity</td>
<td>75-300 cP</td>
</tr>
<tr>
<td></td>
<td>Styrene Content</td>
<td>40-50%</td>
</tr>
</tbody>
</table>
Comparisons

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>PCC</th>
<th>PPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength (MPa)</td>
<td>13.0-35.0</td>
<td>50.0-150.0</td>
</tr>
<tr>
<td>Tensile Strength (MPa)</td>
<td>1.5-3.5</td>
<td>8.0-25.0</td>
</tr>
<tr>
<td>Flexural Strength (MPa)</td>
<td>2.0-8.0</td>
<td>15.0-45.0</td>
</tr>
<tr>
<td>Modulus of Elasticity (GPa)</td>
<td>20.0-30.0</td>
<td>20.0-40.0</td>
</tr>
<tr>
<td>Abrasion-CT 550 Ball Bearing</td>
<td>40 grams</td>
<td>2-4 grams</td>
</tr>
<tr>
<td>T. Coefficient of Expansion (10^6×C-1)</td>
<td>10.0-12.0</td>
<td>10.0-30.0</td>
</tr>
</tbody>
</table>
Comparisons - Bond Strength CT-551

- PPC: 1200-1800 psi
- Min 500 PSI (SSD)

- PCC: 400-500 psi
- Min 300 psi (SSD) & 400 PSI (Dry)
US-50 DBR Project

- 8 inch thick PCC
- 2004 ADT: 149,000-184,000
- 2030 ADT: Forecasted at 246,000-299,000.
- Polyester Polymer Grout (Kwik Bond) in 2010
- 61,200 dowels
- Diamond Grinding
US-50 DBR Construction

Cutting the Slots
US-50 DBR Construction

Cutting the Slots
US-50 DBR Construction

Ready to Pour PPC Grout
US-50 DBR Construction

Low Viscosity PPC Grout
US-50 DBR Construction

Minimum Vibration
US-50 DBR Construction

Making Sure Slots are Filled Completely
US-50 DBR Construction

Completed DBR Installation
US-50 DBR Construction

Extracted Core
US-50 DBR Construction

Before Grinding
US-50 DBR Construction

After Grinding
Final Remarks

- DBR is an effective pavement preservation strategy
- Distress mainly due to failure of cementitious backfill (cracking, debonding & spalling)
- Improper consolidation & low strength are major culprits
Final Remarks

- DBR with polymer polyester gout reduces risk of failure due to superior properties.
- US 50 DBR project have been placed successfully.
- Recommend more projects with polyester polymer concrete grouts.
Author Contact Information

- Dr. Shakir Shatnawi, President
- Shatec Engineering Consultants, LLC
- 7064 Tarvisio Way
- El Dorado Hills, CA 95762
- Email: sshatnawi@shatec.net
- Phone: 916-990-6488