Joint Distress in Portland Cement Concrete Pavements

Presenter: Larry Sutter Michigan Technological University Michigan Tech Transportation Institute

Jason Weiss, Jan Olek, and Nancy Whiting School of Civil Engineering Purdue University Peter Taylor CP Tech Center Iowa State University

Background

- Significant levels of premature joint deterioration reported across northern states
 - Not all roads affected
 - Problem is significant enough to cause local agencies to reconsider portland cement concrete pavements

-

-SAIL:

SALLES

Wisconsin

Wisconsin

Michigan I-275

E planter and the sec

I The seat of the second s

man with the time to

spinster and a support of the second state of the second

and the second s

Approach

- Research conducted at multiple universities
 - Purdue
 - Iowa State
 - Michigan Tech

Approach

- Research sponsored by
 - State DOTs
 - ✓ Indiana
 - ✓ Iowa (lead state)
 - ✓ Michigan
 - ✓ Minnesota
 - ✓ New York
 - ✓ South Dakota
 - $\checkmark {\sf Wisconsin}$

- Industry
 - American Concrete Paving Association
 - ✓ Iowa Concrete Paving Association
 - Michigan Concrete Paving Association
 - ✓ Wisconsin Concrete Paving Association
 - ✓ Portland Cement Association

Many Suspects

- Air entraining agents
- Early entry sawing
- Curing
- Deicing practices

What Do We Know?

- Based on research to date
 - Not a single cause for the deterioration
 - Low air content
 - Compromised air-void systems
 - *w/c* above 0.40
 - Aggressive salt use
 - Marginal or D-cracking aggregates
 - Saturation is a key variable

- Sites in WI, MI, IA, & MN
 - Analysis still on-going
- Different manifestations
 - Related to type/permeability of base, sealant, & materials

- Sites in WI, MI, IA, & MN
 - Analysis still on-going
- Different manifestations
 - Related to type/permeability of base, sealant, & materials
- Top Down vs. Bottom Up vs. Inside Out…
- Commonalities
 - Entrapped water

- A Tale of Two Cores
 - Same slab same joint
- Top Down vs. Bottom Up

- A Tale of Two Cores
 - Same slab same joint
- Cracking parallel to the joint observed on the surface
 - Common observation
- Cracking sub-surface appears to be parallel to the deterioration front
 - F-T damage
- Results in the V-shaped top down damage

- A Tale of Two Cores
 - Same slab same joint
- Also found:
- Significant chemical attack from deicers

- A Tale of Two Cores
 - Same slab same joint
- Area with less distress
- Cracking emanating from the bottom up
- Core hole drained significantly slower than all other core holes on the slab
- Water trapped at the bottom but F-T?

I-275, Two Sites, Varying Performance

- Site 2 showing deterioration at joint
- Site 4 not exhibiting deterioration at joint

Summary

• Site 2

- Poor air-void system
- Alkali-silica reaction with fine aggregate particles and related <u>cracks</u> <u>extending</u> into hardened paste, but only within the top inch
- Low paste density, high chloride ingress
- Site 4
 - Adequate air-void system
 - Alkali-silica reaction with fine aggregate particles, but <u>without</u> <u>cracks extending</u> into hardened paste
 - Higher paste density, lower chloride ingress

Site 2, mid-panel Site 2, near joint

Site 4, mid-panel

Site 4, near joint

Pink boxes show area of automated air void analyses. Air voids visibly more abundant in bottom halves of all cores.

Sample ID	Air %	Paste %	Voids/ meter	Paste/ Air ratio	Avg. chord length (mm)	Specific surface (mm ⁻¹)	Spacing factor (mm)
2m - top half	2.0	28.0	214	14.3	0.092	43.5	0.170
2m - bottom half	4.7	27.2	247	5.8	0.191	20.9	0.237
2j - top half	2.4	27.9	161	11.5	0.150	26.6	0.254
2j - bottom half	4.7	27.2	216	5.8	0.218	18.4	0.269
4m - top half	3.0	27.7	323	9.2	0.093	42.9	0.143
4m - bottom half	6.4	26.7	377	4.2	0.169	23.6	0.178
4j - top half	3.0	27.7	327	9.2	0.092	43.4	0.141
4j - bottom half	7.6	26.4	403	3.5	0.189	21.2	0.164

Sample ID	Air %	Paste %	Voids/ meter	Paste/ Air ratio	Avg. chord length (mm)	Specific surface (mm ⁻¹)	< 0.2 mm Spacing factor (mm)
2m - top half	2.0	28.0	214	14.3	0.092	43.5	0.170
2m - bottom half	4.7	27.2	247	5.8	0.191	20.9	0.237
2j - top half	2.4	27.9	161	11.5	0.150	26.6	0.254
2j - bottom half	4.7	27.2	216	5.8	0.218	18.4	0.269
4m - top half	3.0	27.7	323	9.2	0.093	42.9	0.143
4m - bottom half	6.4	26.7	377	4.2	0.169	23.6	0.178
4j - top half	3.0	27.7	327	9.2	0.092	43.4	0.141
4j - bottom half	7.6	26.4	403	3.5	0.189	21.2	0.164

Sample ID	Air %	Paste %	Voids/ meter	Paste/ Air ratio	Avg. chord length (mm)	Specific surface (mm ⁻¹)	< 0.2 mm Spacing factor (mm)
2m - top half	2.0	28.0	214	14.3	0.092	43.5	0.170
2m - bottom half	4.7	27.2	247	5.8	0.191	20.9	0.237
2j - top half	2.4	27.9	161	11.5	0.150	26.6	0.254
2j - bottom half	4.7	27.2	216	5.8	0.218	18.4	0.269
4m - top half	3.0	27.7	323	9.2	0.093	42.9	0.143
4m - bottom half	6.4	26.7	377	4.2	0.169	23.6	0.178
4j - top half	3.0	27.7	327	9.2	0.092	43.4	0.141
4j - bottom half	7.6	26.4	403	3.5	0.189	21.2	0.164

Site 2, (left) with carbonation depth of approx. 3 to 5 mm Site 4 (right) with carbonation depth of approx. 2 to 3 mm.

Site 2, mid-panel

Green = Cl Red = Ca Blue = Si

Site 4, mid-panel

Comparison of best fit lines to Fick' s 2nd Law – chloride penetration more pronounced at Site 2 as compared to Site 4.

Field Studies

- Other Observations
 - Compromised air-void systems due to ettringite in-filling

Field Studies

- Other Observations
 - Base layer drainage

Research on Mechanisms

- A conceptual model will be shown to relate the rate of water absorption to degree of saturation
- When concrete reaches a critical degree of saturation its freeze thaw behavior is compromised
- Salts have slower absorption; however they alter drying with a higher degree of saturation
- Sealers may be able to be used to keep out water but how do they perform in FT

Freeze-Thaw Damage and the Degree of Saturation

Salt Water Solutions are not the Same as Water

- Slower abs. with salt solns.
- Different phase diagram
- Different equilibrium RH

Can We Use Concrete Sealers/Pore Blockers to Reduce Saturation

Golias 2010

- Sealers can keep out water
- FT behavior differs new test in development

Observations

- Absorption to saturation, then damage is instantaneous
- Proper air only delays the rate of saturation
- Salts have slower absorption & alter drying
- Recent investigations of sorption important
- Sealers appear to work but discrepancies are noticed with temperature (working hypothesis)

Conclusions

- Multiple factors are at the root of the problem
 - Materials
 - Design
 - Construction
- What worked in the past is not working now
 - Deicing practices have changed the game
 - New materials require new specifications and construction practices

Conclusions

- New maintenance practices must be examined
 - Sealants
- Marginal concrete will not survive
 - Need low permeability
 - Need good air-void systems
 - Need high quality aggregates
 - Need thoughtful deicing practices

Questions?

Contact Information

National Concrete Pavement Technology Center

Jason Weiss Purdue University

School of Civil Engineering 550 Stadium Mall Drive West Lafayette, IN 47907

wjweiss@purdue.edu

Peter Taylor Iowa State University Larry Sutter Michigan Technological University

CP Tech Center 2711 South Loop Drive Suite 4700 Ames, IA 50010

ptaylor@iastate.edu

Michigan Tech Transportation Institute 1400 Townsend Drive Houghton, MI 49931

llsutter@mtu.edu