Joint Distress in Portland Cement Concrete Pavements

Presenter: Larry Sutter
Michigan Technological University
Michigan Tech Transportation Institute

Jason Weiss, Jan Olek, and Nancy Whiting
School of Civil Engineering
Purdue University

Peter Taylor
CP Tech Center
Iowa State University
Background

• Significant levels of premature joint deterioration reported across northern states
 – Not all roads affected
 – Problem is significant enough to cause local agencies to reconsider portland cement concrete pavements
Wisconsin
Approach

• Research conducted at multiple universities
 – Purdue
 – Iowa State
 – Michigan Tech
Approach

• Research sponsored by
 – State DOTs
 ✓ Indiana
 ✓ Iowa (lead state)
 ✓ Michigan
 ✓ Minnesota
 ✓ New York
 ✓ South Dakota
 ✓ Wisconsin
 – Industry
 ✓ American Concrete Paving Association
 ✓ Iowa Concrete Paving Association
 ✓ Michigan Concrete Paving Association
 ✓ Wisconsin Concrete Paving Association
 ✓ Portland Cement Association
Many Suspects

- Air entraining agents
- Early entry sawing
- Curing
- Deicing practices
What Do We Know?

• Based on research to date
 – Not a single cause for the deterioration
 • Low air content
 • Compromised air-void systems
 • w/c above 0.40
 • Aggressive salt use
 • Marginal or D-cracking aggregates
 – Saturation is a key variable
Field Studies

• Sites in WI, MI, IA, & MN
 – Analysis still on-going

• Different manifestations
 – Related to type/permeability of base, sealant, & materials
Field Studies

• Sites in WI, MI, IA, & MN
 – Analysis still on-going

• Different manifestations
 – Related to type/permeability of base, sealant, & materials

• Top Down vs. Bottom Up vs. Inside Out…

• Commonalities
 – Entrapped water
Field Studies

• A Tale of Two Cores
 – Same slab – same joint
• Top Down vs. Bottom Up
Field Studies

• A Tale of Two Cores
 – Same slab – same joint

• Cracking parallel to the joint observed on the surface
 – Common observation

• Cracking sub-surface appears to be parallel to the deterioration front
 – F-T damage

• Results in the V-shaped top down damage
Field Studies

- A Tale of Two Cores
 - Same slab – same joint
- Also found:
- Significant chemical attack from deicers
Field Studies

• A Tale of Two Cores
 – Same slab – same joint
• Area with less distress
• Cracking emanating from the bottom up
• Core hole drained significantly slower than all other core holes on the slab
• Water trapped at the bottom but F-T?
I-275, Two Sites, Varying Performance

- Site 2 - showing deterioration at joint
- Site 4 - not exhibiting deterioration at joint
Summary

• Site 2
 – Poor air-void system
 – Alkali-silica reaction with fine aggregate particles and related **cracks extending** into hardened paste, but only within the top inch
 – Low paste density, high chloride ingress

• Site 4
 – Adequate air-void system
 – Alkali-silica reaction with fine aggregate particles, but **without cracks extending** into hardened paste
 – Higher paste density, lower chloride ingress
Pink boxes show area of automated air void analyses. Air voids visibly more abundant in bottom halves of all cores.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Air %</th>
<th>Paste %</th>
<th>Voids/meter</th>
<th>Paste/Air ratio</th>
<th>Avg. chord length (mm)</th>
<th>Specific surface (mm⁻¹)</th>
<th>Spacing factor (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2m - top half</td>
<td>2.0</td>
<td>28.0</td>
<td>214</td>
<td>14.3</td>
<td>0.092</td>
<td>43.5</td>
<td>0.170</td>
</tr>
<tr>
<td>2m - bottom half</td>
<td>4.7</td>
<td>27.2</td>
<td>247</td>
<td>5.8</td>
<td>0.191</td>
<td>20.9</td>
<td>0.237</td>
</tr>
<tr>
<td>2j - top half</td>
<td>2.4</td>
<td>27.9</td>
<td>161</td>
<td>11.5</td>
<td>0.150</td>
<td>26.6</td>
<td>0.254</td>
</tr>
<tr>
<td>2j - bottom half</td>
<td>4.7</td>
<td>27.2</td>
<td>216</td>
<td>5.8</td>
<td>0.218</td>
<td>18.4</td>
<td>0.269</td>
</tr>
<tr>
<td>4m - top half</td>
<td>3.0</td>
<td>27.7</td>
<td>323</td>
<td>9.2</td>
<td>0.093</td>
<td>42.9</td>
<td>0.143</td>
</tr>
<tr>
<td>4m - bottom half</td>
<td>6.4</td>
<td>26.7</td>
<td>377</td>
<td>4.2</td>
<td>0.169</td>
<td>23.6</td>
<td>0.178</td>
</tr>
<tr>
<td>4j - top half</td>
<td>3.0</td>
<td>27.7</td>
<td>327</td>
<td>9.2</td>
<td>0.092</td>
<td>43.4</td>
<td>0.141</td>
</tr>
<tr>
<td>4j - bottom half</td>
<td>7.6</td>
<td>26.4</td>
<td>403</td>
<td>3.5</td>
<td>0.189</td>
<td>21.2</td>
<td>0.164</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Air %</td>
<td>Paste %</td>
<td>Voids/meter</td>
<td>Paste/Air ratio</td>
<td>Avg. chord length (mm)</td>
<td>Specific surface (mm(^{-1}))</td>
<td>< 0.2 mm Spacing factor (mm)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>2m - top half</td>
<td>2.0</td>
<td>28.0</td>
<td>214</td>
<td>14.3</td>
<td>0.092</td>
<td>43.5</td>
<td>0.170</td>
</tr>
<tr>
<td>2m - bottom half</td>
<td>4.7</td>
<td>27.2</td>
<td>247</td>
<td>5.8</td>
<td>0.191</td>
<td>20.9</td>
<td>0.237</td>
</tr>
<tr>
<td>2j - top half</td>
<td>2.4</td>
<td>27.9</td>
<td>161</td>
<td>11.5</td>
<td>0.150</td>
<td>26.6</td>
<td>0.254</td>
</tr>
<tr>
<td>2j - bottom half</td>
<td>4.7</td>
<td>27.2</td>
<td>216</td>
<td>5.8</td>
<td>0.218</td>
<td>18.4</td>
<td>0.269</td>
</tr>
<tr>
<td>4m - top half</td>
<td>3.0</td>
<td>27.7</td>
<td>323</td>
<td>9.2</td>
<td>0.093</td>
<td>42.9</td>
<td>0.143</td>
</tr>
<tr>
<td>4m - bottom half</td>
<td>6.4</td>
<td>26.7</td>
<td>377</td>
<td>4.2</td>
<td>0.169</td>
<td>23.6</td>
<td>0.178</td>
</tr>
<tr>
<td>4j - top half</td>
<td>3.0</td>
<td>27.7</td>
<td>327</td>
<td>9.2</td>
<td>0.092</td>
<td>43.4</td>
<td>0.141</td>
</tr>
<tr>
<td>4j - bottom half</td>
<td>7.6</td>
<td>26.4</td>
<td>403</td>
<td>3.5</td>
<td>0.189</td>
<td>21.2</td>
<td>0.164</td>
</tr>
<tr>
<td>Sample ID</td>
<td>Air %</td>
<td>Paste %</td>
<td>Voids/ Meter</td>
<td>Paste/Air ratio</td>
<td>Avg. chord length (mm)</td>
<td>Specific surface (mm⁻¹)</td>
<td>< 0.2 mm Spacing factor (mm)</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2m - top half</td>
<td>2.0</td>
<td>28.0</td>
<td>214</td>
<td>14.3</td>
<td>0.092</td>
<td>43.5</td>
<td>0.170</td>
</tr>
<tr>
<td>2m - bottom half</td>
<td>4.7</td>
<td>27.2</td>
<td>247</td>
<td>5.8</td>
<td>0.191</td>
<td>20.9</td>
<td>0.237</td>
</tr>
<tr>
<td>2j - top half</td>
<td>2.4</td>
<td>27.9</td>
<td>161</td>
<td>11.5</td>
<td>0.150</td>
<td>26.6</td>
<td>0.254</td>
</tr>
<tr>
<td>2j - bottom half</td>
<td>4.7</td>
<td>27.2</td>
<td>216</td>
<td>5.8</td>
<td>0.218</td>
<td>18.4</td>
<td>0.269</td>
</tr>
<tr>
<td>4m - top half</td>
<td>3.0</td>
<td>27.7</td>
<td>323</td>
<td>9.2</td>
<td>0.093</td>
<td>42.9</td>
<td>0.143</td>
</tr>
<tr>
<td>4m - bottom half</td>
<td>6.4</td>
<td>26.7</td>
<td>377</td>
<td>4.2</td>
<td>0.169</td>
<td>23.6</td>
<td>0.178</td>
</tr>
<tr>
<td>4j - top half</td>
<td>3.0</td>
<td>27.7</td>
<td>327</td>
<td>9.2</td>
<td>0.092</td>
<td>43.4</td>
<td>0.141</td>
</tr>
<tr>
<td>4j - bottom half</td>
<td>7.6</td>
<td>26.4</td>
<td>403</td>
<td>3.5</td>
<td>0.189</td>
<td>21.2</td>
<td>0.164</td>
</tr>
</tbody>
</table>
Site 2, (left) with carbonation depth of approx. 3 to 5 mm
Site 4 (right) with carbonation depth of approx. 2 to 3 mm.
Green = Cl
Red = Ca
Blue = Si
Comparison of best fit lines to Fick’s 2nd Law – chloride penetration more pronounced at Site 2 as compared to Site 4.
Field Studies

• Other Observations
 – Compromised air-void systems due to ettringite in-filling
Field Studies

• Other Observations
 – Base layer drainage

Conversion: \(k \text{ in ft/day} = k \text{ in cm/s} \times 2834.66 \)
Research on Mechanisms

• A conceptual model will be shown to relate the rate of water absorption to degree of saturation
• When concrete reaches a critical degree of saturation its freeze thaw behavior is compromised
• Salts have slower absorption; however they alter drying with a higher degree of saturation
• Sealers may be able to be used to keep out water but how do they perform in FT
Freeze-Thaw Damage and the Degree of Saturation

To Reach 88%
- 4% Conc Air – 0.4 years
- 6% Conc Air – 6 Years
- 8% Conc Air – 6 Years

Li et al. 2012
Salt Water Solutions are not the Same as Water

- Slower abs. with salt solns.
- Different phase diagram
- Different equilibrium RH
Can We Use Concrete Sealers/Pore Blockers to Reduce Saturation

- Sealers can keep out water
- FT behavior differs – new test in development

![Graph showing water absorbed and relative elastic modulus over time and cycles.](image-url)
Observations

• Absorption to saturation, then damage is instantaneous
• Proper air only delays the rate of saturation
• Salts have slower absorption & alter drying
• Recent investigations of sorption important
• Sealers appear to work but discrepancies are noticed with temperature (working hypothesis)
Conclusions

• Multiple factors are at the root of the problem
 – Materials
 – Design
 – Construction

• What worked in the past is not working now
 – Deicing practices have changed the game
 – New materials require new specifications and construction practices
Conclusions

• New maintenance practices must be examined
 – Sealants

• Marginal concrete will not survive
 – Need low permeability
 – Need good air-void systems
 – Need high quality aggregates
 – Need thoughtful deicing practices
Questions?

Contact Information

Jason Weiss
Purdue University
School of Civil Engineering
550 Stadium Mall Drive
West Lafayette, IN 47907
wjweiss@purdue.edu

Peter Taylor
Iowa State University
CP Tech Center
2711 South Loop Drive
Suite 4700
Ames, IA 50010
ptaylor@iastate.edu

Larry Sutter
Michigan Technological University
Michigan Tech Transportation Institute
1400 Townsend Drive
Houghton, MI 49931
ltsutter@mtu.edu