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Background 

• Significant levels of premature joint 

deterioration reported across northern 

states 

– Not all roads affected 

– Problem is significant enough to cause local 

agencies to reconsider portland cement 

concrete pavements 
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Approach 

• Research conducted at multiple universities 

– Purdue 

– Iowa State 

– Michigan Tech 



Approach 

• Research sponsored by 

– State DOTs 

 Indiana 

 Iowa (lead state) 

Michigan 

Minnesota 

New York 

South Dakota 

Wisconsin 

– Industry 

American Concrete Paving 

Association 

 Iowa Concrete Paving 

Association 

Michigan Concrete Paving 

Association 

Wisconsin Concrete 

Paving Association 

Portland Cement 

Association 



Many Suspects 

• Air entraining agents 

• Early entry sawing 

• Curing 

• Deicing practices 



What Do We Know? 

• Based on research to date 

– Not a single cause for the deterioration 

• Low air content 

• Compromised air-void systems 

• w/c above 0.40 

• Aggressive salt use 

• Marginal or D-cracking aggregates 

– Saturation is a key variable 



Field Studies 

• Sites in WI, MI, IA, & MN 

– Analysis still on-going 

• Different manifestations 

– Related to type/permeability of base, 

sealant, & materials 



Field Studies 

• Sites in WI, MI, IA, & MN 

– Analysis still on-going 

• Different manifestations 

– Related to type/permeability of base, 

sealant, & materials 

• Top Down vs. Bottom Up vs. 

Inside Out… 

• Commonalities 

– Entrapped water  
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Field Studies 

• A Tale of Two Cores 

– Same slab – same joint 

• Cracking parallel to the joint 
observed on the surface 

– Common observation 

• Cracking sub-surface appears to be 
parallel to the deterioration front 

– F-T damage 

• Results in the V-shaped top down 
damage 



Field Studies 

• A Tale of Two Cores 

– Same slab – same joint 

• Also found: 

• Significant chemical 

attack from deicers 

Al Cl Ca 

BSE 

Friedel’s Salt 



Field Studies 

• A Tale of Two Cores 

– Same slab – same joint 

• Area with less distress 

• Cracking emanating from the bottom 

up 

• Core hole drained significantly 

slower than all other core holes on 

the slab 

• Water trapped at the bottom but F-T? 



I-275, Two Sites, Varying Performance 

Site 2 Site 4 

• Site 2 - showing deterioration at joint 

• Site 4 - not exhibiting deterioration at joint 



Summary 

• Site 2 

– Poor air-void system 

– Alkali-silica reaction with fine aggregate particles and related cracks 

extending into hardened paste, but only within the top inch 

– Low paste density, high chloride ingress 

• Site 4 

– Adequate air-void system 

– Alkali-silica reaction with fine aggregate particles, but without 

cracks extending into hardened paste 

– Higher paste density, lower chloride ingress 



Pink boxes show area of automated air void analyses. 

Air voids visibly more abundant in bottom halves of all cores. 

Site 2, mid-panel Site 2, near joint Site 4, mid-panel Site 4, near joint 



Sample ID Air % 

Paste 

% 

Voids/ 

meter 

Paste/ 

Air ratio 

Avg. 

chord 

length 

(mm) 

Specific 

surface 

(mm-1) 

Spacing 

factor 

(mm) 

2m - top half 2.0 28.0 214 14.3 0.092 43.5 0.170 

2m - bottom half 4.7 27.2 247 5.8 0.191 20.9 0.237 

2j - top half 2.4 27.9 161 11.5 0.150 26.6 0.254 

2j - bottom  half 4.7 27.2 216 5.8 0.218 18.4 0.269 

4m - top half 3.0 27.7 323 9.2 0.093 42.9 0.143 

4m - bottom half 6.4 26.7 377 4.2 0.169 23.6 0.178 

4j - top half 3.0 27.7 327 9.2 0.092 43.4 0.141 

4j - bottom  half 7.6 26.4 403 3.5 0.189 21.2 0.164 
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2m - bottom half 4.7 27.2 247 5.8 0.191 20.9 0.237 
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4m - bottom half 6.4 26.7 377 4.2 0.169 23.6 0.178 
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Site 2, (left) with carbonation depth of approx. 3 to 5 mm 

Site 4 (right) with carbonation depth of approx. 2 to 3 mm. 



Site 2, mid-panel     Site 4, mid-panel 

Green = Cl 

Red = Ca 

Blue = Si 



Comparison of best fit lines to Fick’s 2nd Law – chloride penetration more 

pronounced at Site 2 as compared to Site 4. 



Field Studies 

• Other Observations 

– Compromised air-void systems due to ettringite in-filling 

 

 



Field Studies 

• Other Observations 

– Base layer drainage 

 

 



Research on Mechanisms 

• A conceptual model will be shown to relate the 
rate of water absorption to degree of saturation 

• When concrete reaches a critical degree of 
saturation its freeze thaw behavior is 
compromised 

• Salts have slower absorption; however they alter 
drying with a higher degree of saturation 

• Sealers may be able to be used to keep out 
water but how do they perform in FT 



Freeze-Thaw Damage and  

the Degree of Saturation 



Salt Water Solutions are  

not the Same as Water 

• Slower abs. with salt solns. 

• Different phase diagram 

• Different equilibrium RH  
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• Sealers can keep out water 

• FT behavior differs –  
new test in development 

Can We Use Concrete 

Sealers/Pore Blockers to Reduce Saturation 
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Observations 

• Absorption to saturation, then damage is 
instantaneous 

• Proper air only delays the rate of saturation  

• Salts have slower absorption & alter drying 

• Recent investigations of sorption important 

• Sealers appear to work but discrepancies are 
noticed with temperature (working hypothesis) 



Conclusions 

• Multiple factors are at the root of the problem 

– Materials 

– Design 

– Construction 

• What worked in the past is not working now 

– Deicing practices have changed the game 

– New materials require new specifications and 

construction practices 



Conclusions 

• New maintenance practices must be 
examined 

– Sealants 

• Marginal concrete will not survive 

– Need low permeability 

– Need good air-void systems 

– Need high quality aggregates 

– Need thoughtful deicing practices 
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