

What's Your Pavements' Mileage?

LCA-PLUS for Sustainable Development of Our Nation's Pavement Network

Franz-Josef Ulm & Mehdi Akbarian Massachusetts Institute of Technology Concrete Sustainability Hub http://web.mit.edu/cshub

Why Pavenment-Vehicle Interactions Matter?

LCA & LCCA Boundaries

• US consumes **174 billion gallons** of fuel per year on highways / 10% consumed in California (2010):

1% CA saving \approx 9.1 million barrels of crude oil per year

- ≈ \$520 million per year
- ≈ 2 million tons of CO_2 per year

Source: Taylor, et al. 2006. Effects of Pavement Structure on Vehicle Fuel Consumption – Phase III

An Estimate

- Rough Estimate of Extra-Fuel Consumption:
 - Consider your State
 - 6,750-8,500 gal/lane-mile/year (!)
 - Equivalent: 40–50 Tons CO2/mile/year (!)
- Example California: For the 49,000 CALTRANS lane-miles ALONE:
 ~ 2 Million Tons CO2/year
- An opportunity for substantial CO2 reductions, in EVERY State.

OUTLINE

- This is not about Concrete vs. Asphalt, this is about unleashing opportunities for Greenhouse Gas Savings.
- Method in place: Pavement-Vehicle Interaction: Roughness + Deflection
- Life Cycle Assessment of...
 - STATUS QUO: Network analysis for the US
 FUTURE POTENTIAL: Possibilities for Improvement
 - Moving forward together...

Method in Place

The Good Practice <u>http://web.mit.edu/cshub</u>

Model-Based Assessment of Pavement Vehicle Interaction (PVI)

PVI-Roughness Model / (similar to J. Harvey/UCPRC)

HDM-IV Model:

• Inputs:

Roughness is only Half of the PVI Picture PVI-DEFLECTION MODEL

Akbarian, Ulm, Nazzal (2012)

Simplest pavement
 deflection model:

- Approach:
 - Calibrate/FHWA
 - Validate/FHWA
 - Scale Fuel Consumption from Gradient Force

- Input:
 - Pavement stiffness E
 - Pavement Thickness h
 - Substrate stiffness k

* Mechanistic Approach to Pavement-Vehicle Interaction and Its Impact in LCA - Journal of the Transportation Research Board, 2012.

The current state of the US Road Network: "mileage"

STATUS QUO: WHAT IF BUSINESS AS USUAL

Moving beyond "BaU"

FHWA/LTPP Monitored Sections

Data used:

- Top layer modulus E
- Subgrade modulus k
- Loading condition q
- Roughness •
- Top layer thickness *h* Traffic Volume (AADT, AADTT

Roughness-Induced Extra-Fuel Consumption

Current State (statistical evaluation) of Extra-Fuel Consumption due to PVI

50 yr PVI GHG Emissions of Two Pavement Scenarios Relative to a "Flat" Pavement

Current State (statistical evaluation) of Extra-Fuel Consumption due to PVI

The US uses 174 billion gallons of fuel per year on highways. Excess fuel consumption of 740 million gallons per year.

Opportunities for Improvement

Moving beyond Business as Usual Designing for the Future

Can we do better? – Yes, we can!

HOW TO MOVE BEYOND BUSINESS AS USUAL?

Proof of Concept State-of-the-Art Pvmt Design

• Input: MEPDG*

Concrete and Asphalt Pavements	
Design life (years)	50
Location	Columbus, Ohio
AADT (vehicles/day)	15,000
AADTT (trucks/day)	1,500
Traffic growth	4%
Total Lanes	2
Lane width (m)	3.7
Terminal IRI (in/mile)	172

Output: MEPDG*

Concrete Section (JPCP)**		
PCC	10"	
Non-stabilized	6"	
Subgrade	Semi-infinite	
Asphalt Section***		
Flexible	10"	
Non-stabilized	10"	
Subgrade	Semi-infinite	

Pavemen

Design MEPDG, CAL-ME

Structurally Sound Design

+ E(t,T), IRI(t), k, h, Traffic,...

* MEPDG = Mechanistic Empirical Pavement Design Guide ** JPCP transverse cracking dominates 50yr design *** IRI, Permanent deformation (AC only) dominates

Roughness & Deflection Induced Emissions are EQUALLY important

REDUCTION OF CO2 BY DESIGN

Design Options For 10" Pavement Structures

- LCA Shows:
- STATUS QUO: 5,000/tons CO2/50yr.
- Reduce to: 1,000/tons/CO2/50yr

10

(for new/reconstruction)

Looking Forward

- This is not a matter of concrete vs. asphalt; this is about science-based engineering solutions for sustainable pavement systems.
- We are inviting you to join our efforts in the CSHub@MIT
 - Carry the information into your States, to your local DOTs
 - Become a Champion for your State/County to (1) evaluate the mileage of your pavement system.
 - ...and (2) to help identify possible improvement scenarios that substantially reduce the environmental footprint: GET MORE MILEAGE OUT OF YOUR PAVEMENT SYSTEM
 - And Costs...!

Come and join us for Industry Day at MIT September 27, 2012 <u>http://web.mit.edu/cshub</u>