Design Criteria and Testing for Cold In-Place Recycling

Todd Thomas Technical Services Engineer Colas Solutions, Inc. August 29, 2012

Presentation Topics

- CIR description
- Project selection criteria for CIR
- Mix design
- Pavement design

CIR Description

- Typical treatment depth of 2 to 4 inches
- Train of equipment (tanker trucks, milling machines, crushing and screening units, mixers, a paver, and rollers)
- An additive or combination of additives (asphalt emulsion, lime, fly ash, cement) mixing with 100% RAP
- Resulting recycled pavement usually opened to traffic at the end of the work day

CIR Description

on ground or directly in paver hopper

Presentation Topics

- CIR description
- Project selection criteria for CIR
- Mix design
- Pavement design

Project selection criteria Generalized pavement deterioration curve

Time, years (exact values vary depending on traffic, materials, etc.)

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Project selection criteria

- Highways, county roads, city streets, airports
- Any asphalt-surfaced road, including composite pavements, with adequate thickness for the process
- Pavements with functional or minor structural distresses
- Treats the bituminous layer but not the base or subgrade

Project selection

- Minor structural upgrades for current or future traffic
- Good surface drainage and internal drainage
- Up to 20-year service life, or more, with preventative maintenance

 Generally an alternative to mill and fill

Challenges and limitations

- Steep grades are processed down-hill
- Longitudinal profile problems
- Tight curves

 Manholes and other utilities require special handling

Presentation Topics

- CIR description
- Project selection criteria for CIR
- Mix design
- Pavement design

Purpose of Mix Design

- Determine emulsion content –guidance on low and high contents for construction
 – Impact on project cost
- Determine emulsion properties to meet mix and job requirements
- Look for problem materials and ways to correct for them

Mix Design

- HMA industry tests have been adapted for CIR mix designs (except raveling)
- CIR acts like a slightly lower modulus HMA material

Sampling and Preparation

- Samples to represent length and width
- Ensure uniformity or design around variability
- Look for paving fabrics
- Look for stripping or delaminated layers

Mix design – key tests

- Grinder / crusher > Simulate milling
- Early-cure strength > Adequate setting
- Marshall stability > Long-term strength or tensile strength
- Retained strength
- Hamburg WT
- Thermal crack

- Key performance indicator
- > Alt. strength or retained
- Non-load cracking

Mix design – grinder or crusher

- Miniature lab milling machine or jaw crusher to simulate expected field gradations
- Alternate field milling if same equipment as job

Mix design – mixing

 Use a mechanical mixer to better simulate mixing that occurs in field equipment

Compaction and curing

- Superpave gyratory compactor. Some agencies specify Marshall compaction
- Cure at 60°C from 16 to 48 hours (except raveling) after compaction

Strength and Retained Strength

- Marshall strength (40°C) or indirect tensile strength (25°C)
- 70% retained stability after vacuum saturation and soak

Mix design – Thermal cracking

- AASHTO T-322
- To meet the low temperature requirements for the project

Mix design – typical emulsion rates

Typical emulsion quantities for CIR

- 1.5 to 3.5% or higher CSS-1/1h (special) and 1 to 3% HFMS-2
- Depends on how "active" the asphalt in the RAP is
- Ratio of emulsion residue to cement or lime of 1.8 or 2.0 (minimum) – if used

Mix design

While there is no nationally accepted mix design procedure yet for CIR, engineered mx design procedures used by many agencies have given more confidence in the process.

Presentation Topics

- CIR description
- Project selection criteria for CIR
- Mix design
- Pavement design

Pavement design – surface courses over CIR

- WMA / HMA binder and wearing courses
- Rubberized asphalt concrete
- Ultra-thin bonded wearing course
- Surface treatments micro surfacing or chip seal, etc.
- Dense-graded cold mixes

Pavement Design for Rehab

- Basic equation: $SN_{OL} = SN_f SN_{eff}$
 - SN_f AASHTO Sec. II, Fig. 3.1 nomograph
 Soil modulus by testing (sampling) or FWD
 - SN_{eff} 2 options
 - From deflection data (FWD recommended)
 - From condition data

SN_{eff} from Deflection Data

- Falling weight deflectometer (FWD) is one common device
- Estimate soil modulus
- Quantify variability along road

SN_{eff} from Condition Data

- $SN_{eff} = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$
 - D_1 , D_2 , D_3 = Thickness values of existing layers
 - a_1 , a_2 , a_3 = Layer coefficients corresponding to the current condition
 - m₂, m₃ = Drainage coefficients corresponding to the current condition

Overlay Thickness

- $SN_{OL} = SN_f SN_{eff}$
- Overlay $SN_{OL} = D_{OL} a_{OL}$
- $D_{OL} = (SN_f SN_{eff}) / a_{OL}$

How to apply equation for CIR?

- $SN_{OL+CIR} = SN_f SN_{eff}$
 - CIR will remove part of the asphalt layer and its structural contribution
 - CIR coefficient ranges from 0.28 to 0.35 (0.30 is typical)
 - SN_f is calculated the same way as for overlays
 - SN_{eff} should consider the following:

Pavement Design

 $SN_{OL+CIR} = SN_{f} - SN_{eff}$

- SN_{OL+CIR} = a_{OL}D_{OL} + a_{CIR}D_{CIR} (Solve for overlay thickness, keeping CIR thickness fixed)
- $SN_f = AASHTO Sec. II, Fig. 3.1$
- $SN_{eff} = a_{AC}D_{AC} + a_2D_2m_2 + a_3D_3m_3$ (condition data, etc.)

NCHRP study for CIR using MEPDG

Summary

- Representative sampling and laboratory material processing is critical
- Test methods are in place to ensure a successful project, determine the binder content, and the need for additives
- A coefficient for CIR as high as 0.35, but more like 0.30, can be considered with proper mix design and construction procedures in place

Resources

Valuable resources if more information is needed...

- ARRA Basic Asphalt Recycling Manual
- Recycling and Reclamation of Asphalt Pavements Using In-Place Methods, NCHRP Synthesis 421, 2011
- 1993 Guide for Design of Pavement Structures, AASHTO
- ARRA / FHWA recycling seminars
- www.arra.org

Thank You!

Solutions

Todd Thomas, P.E.

Colas Solutions, Inc.

7374 Main Street

Cincinnati, Ohio 45244

Direct: 513-272-5657

Email: thomas@colassolutions.com

www.colassolutions.com