
Innovations in Thin Asphalt Overlays

Audrey Copeland, PhD, PE Vice President – Engineering, Research, & Technology

National Asphalt Pavement Association

August 29th, 2012

Information Series 135

Thin Asphalt Overlays for **Pavement Preservation**

Beyond the basics ...

Free at: NAPA's Booth or at www.asphaltpavement.org

Thin Asphalt Overlays An Essential Pavement Preservation Tool

- Lower life-cycle costs
- Applied to all roadway types, various conditions
- Most common used preservation treatment after crack filling & sealing for high volume roadways
- The most effective preservation treatment
- Long-life (Perpetual) pavement

Washington Street in the Village of Canal Winchester, OH with Smoothseal™.

Thin Overlays for Preservation: From Drawbacks to *Innovative Solutions*

- May have higher initial cost than other preservation strategies.
 - Provide longer life
 - Thinner lifts
 - Use low-cost screenings and recycled materials (RAP, RAS, rubber)
- Construction & application in cooler temperatures
 - Warm Mix Asphalt
- Durability versus permanent deformation
 - Higher asphalt contents
 - Engineered binders (e.g. polymer, rubber, etc.)

Innovations In Thin Overlays for Pavement Preservation

- Fine Grade Polymer Thin Overlays
 - Warm Mix Asphalt
- Smaller NMAS Mixes (i.e. 4.75 mm mixes)
 - RAP and RAS
- Perpetual through Preservation

Innovations in Thin Asphalt Overlays

FINE GRADE POLYMER MIXES

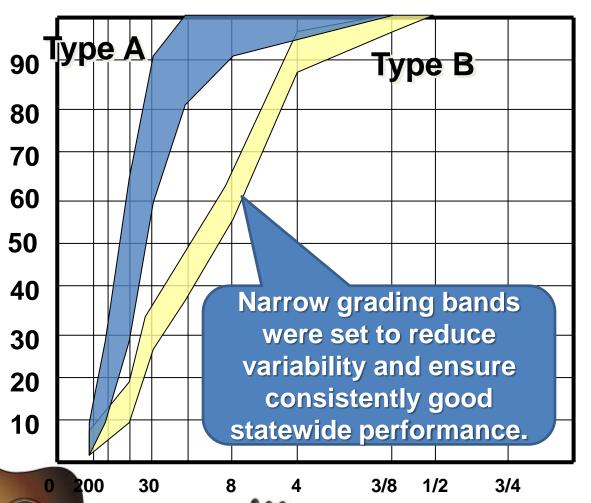
The SmoothsealTM Timeline

1950/60s – Developed in Rockville, MD

- 1991 Ohio Industry Initiative Economical, thin life to save \$ Preserve and provide some structure Non-proprietary Good durability (latex)
- 2005 Ohio DOT Specification Item 424 as pavement preservation treatment
- 2010 Over 500,000 CY placed by Ohio DOT
- 2012 Experimental project as wearing course in new construction

Item 424, Mix Types

- Type A
 - Mix Design Recipe mix (all traffic types
 - light, medium, heavy applications)
- Type B (Smoothseal)
 - Mix Design Volumetric mix design using Marshall Method (light, medium or heavy traffic pavements)


Item 424, Mix Types

- Type "A" Composition
 - Blend of sands w/ 8.5% polymer modified asphalt binder (76-22 SBS or 64-22 w/5% SBR)
 - Silicon dioxide requirement on the fine agg. ensures good skid resistance
 - Highest polymer dosage used in Ohio's market enhances mix toughness, stability, and longevity

Item 424, Mix Types

- Type "B" (Smoothseal) Composition
 - ½-inch max. sized coarse agg. and sand particles w/ min. polymer binder content of 6.4% (76-22 SBS or 64-22 w/5% SBR)
 - 100% two-faced crushed coarse agg. for heavy traffic mixes to provide stability
 - Silicon dioxide requirement on the fine agg. ensures good skid resistance
 - Polymer modification used to enhance mix toughness, stability and longevity
 - 10% RAP permitted

Item 424, Type B				
1/2 inch	100			
3/8 inch	95-100			
No. 4	85-95			
No. 8	53-63			
No. 16	37-47			
No. 30	25-35			
No. 50	9-19			
No. 100				
No. 200	3-8			

Economics

Annualized Cost per SY (OHIO)

- no discount -

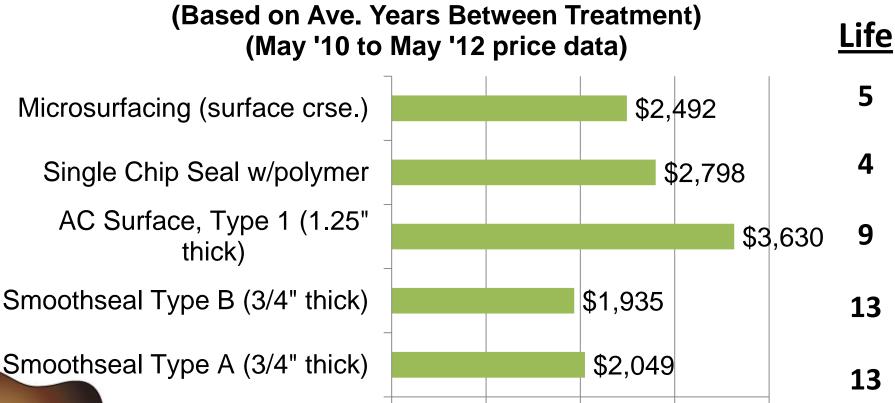
(Based on Ave. Years Between Treatment) (May '10 to May '12 price data)

Microsurfacing (surface crse.)

Single Chip Seal w/polymer

AC Surface, Type 1 (1.25" thick)

Smoothseal Type B (3/4" thick)


Smoothseal Type A (3/4" thick)

\$- \$0.10\$0.20\$0.30\$0.40\$0.50\$0.60

Economics

Annualized Cost per Lane Mile (OHIO)

- no discount -

What Distinguishes Smoothseal Market Treatments?

- No loose aggregate
- Corrects minor rutting (< 1/4")
- Improves Ride Quality & Driver Safety
- Increases Structural Strength
- Improves Pavement Drainage

SmoothsealTM with Warm Mix Asphalt SR 146 in Muskingum County, Ohio

Innovations in Thin Asphalt Overlays

4.75 MM MIXES

Refining 4.75 mm Mixtures: Performance and Cost Savings

- Mississippi Test Section at NCAT Test Track in 2003
 - Limestone screenings, crushed gravel, natural sand
 - SBS modified PG76-22 binder
 - 0.8 inches thick
 - 8 years of extreme trafficking = 30 million
 ESALs
 - Only ¼" rutting, no cracking

Refining 4.75 mm Mixtures: Performance and Cost Savings

Pooled Fund Study among 9 States

Refine Superpave mix design

 New Superpave revisions for AASHTO 2012 Standards

http://www.ncat.us/files/research-synopses/475mm-mixes.pdf

Revised 4.75 mm Mix Design Criteria

Design ESAL Range (Millions)	N _{des}	Minimum FAA	Minimum Sand Equivalent	Minimum V _{be}	Maximum V _{be}	%G _{mm} @N _{ini}	Dust-to-Binder Ratio
<0.3	50	40	40	12.0	15.0	<u><</u> 91.5	1.0 to 2.0
0.3 to <u><</u> 3.0	75	45	40	11.5	13.5	<u><</u> 90.5	1.0 to 2.0
3.0 to <u><</u> 30	100	4 5	45	11.5	13.5	<u><</u> 89.0	1.0 to 2.0

Gradation Limits		
Sieve Size	Maximum	Minimum
12.5 mm	_	100
9.5 mm	100	95
4.75 mm	100	90
1.18 mm	30	55
0.075 mm	13	6

Design Air Void Range = 4.0 to 6.0 percent

The Solution for High Asphalt Contents

- Fine RAP with high asphalt content and high dust is well suited for use in 4.75 mm mixes
- Stiff RAP binder and dust help make mixes more resistant to tenderness and rutting

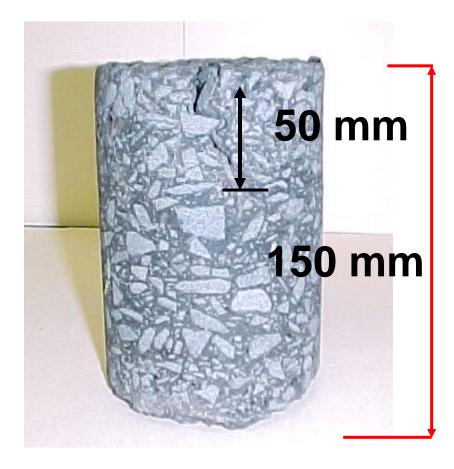
NCAT's Group Pavement Preservation Study

- 4.75 mm mixes
 - 50% RAP (fractionated, fine)
 - RAP and RAS

Innovations in Thin Asphalt Overlays

PERPETUAL THROUGH PRESERVATION

Perpetual Pavements


Max Tensile S

In Oregon, they're asking the question: Can a local road or city street be Perpetual or is it just for highways?

Preserve the Structure and Preserve the Surface Design Pavements to fail "top down" not bottom up

Perpetual through Preservation

- May not have to build Interstate thicknesses on a county road or city street to become a Perpetual Pavement
- Preventive seals on pavements less than 4-5 inches will only mask structural distresses and eventually may lead to full depth failures
- A 1 inch overlay of an existing 4 inch pavement can double the fatigue life
- Once you achieve a perpetual design thickness you can focus on preserving the surface for functional attributes

Asphalt Thickness vs. Fatigue life

Thickness	Micro strain	Reps to failure
2	-652	30,234
3	-495	71,537
4	-383	160,693
5	-302	340,507
6	-242	682,133

Getting to Perpetual

- Pavement inventory should include accurate thicknesses and condition of lower layers
- Don't assume cracks are bottom up, if you have existing pavements > 5" thick it is probable that the cracks are top down
- Core through cracks to confirm

Key Elements for Existing Pavements

- Pavement Management Strategy: Include goal to get to a Perpetual Structure
- Determine the ultimate thickness needed
- Schedule overlay(s) to get to appropriate thickness before the pavement has full depth structural distresses

Check the toolbox...there's an improved multi-tool in there.

- ✓ Longer life from a preservation treatment
- ✓ Lower life cycle costs
- ✓ Versatile, effective
- ✓ Sustainable
 - ✓ Milling and thin asphalt overlays
 - √ Local materials
 - ✓ Recycled materials
 - ✓ Warm Mix Asphalt

For more detailed information...

SmoothsealTM - Cliff Ursich at Flexible Pavements of Ohio at www.flexiblepavements.org

4.75 mm mixtures - Randy West at the National Center for Asphalt Technology at www.ncat.us

Perpetual, 1" at a time - Jim Huddleston at Asphalt Pavement Association of Oregon at http://www.apao.org/index.shtml

THANK YOU!

Audrey Copeland, PhD, PE
Email: audrey@asphaltpavement.org
Phone: 301.731.4748
www.asphaltpavement.org
www.asphaltroads.org