Impact of Thin Overlay on Top-Down Crack Resistance of Aged Pavement

Wednesday, August 29, 2012

Nelson Gibson, Jack Youtcheff
FHWA Office of Infrastructure R&D

Trenton Clark
Virginia Asphalt Pavement Association

Xicheng Qi
(formerly) SES Group & Associates

Kevin McGhee
Virginia Department of Transportation
Outline

• Background & Motivation
• Mix Design
• Construction
• Performance
• Findings
Background and Motivation

- Previous ALF research inspired the study
- The “Absence of Preservation” Scenario
Background and Motivation

- Previous ALF research inspired the study
- The “Absence of Preservation” Scenario
• Embrittlement of In-Situ Asphalt Binder
Background and Motivation

• TSP RD&I Roadmap
 – Materials #01 – Mechanical Binder Properties to Predict Surface Treatment Performance.
Background and Motivation

- TSP RD&I Roadmap
 - Performance #03 - Quantify Performance and Benefits of Various Pavement Preservation Treatments and Develop Pavement Preservation Treatment Performance Models.
 - Performance # 04 - Quantifying the Benefits of Pavement Preservation Treatments.
- Embrittlement of In-Situ Asphalt Binder

![Graph showing embrittlement of asphalt binder over time.](image-url)
Preservation Treatment Options?

- Chip Seal?
- Microsurfacing?
- Fog Seal?
- Thin Overlay?
4.75mm HMA Contents

- 44% Fine Agg. Screenings (#10)
- 26% Sand (Manufactured)
- 20% RAP (Fine)
- 10% Sand (Natural)

- Virgin Asphalt Binder
 PG 76-22
- Extracted Binder
 PG 82-22
Construction
Construction

Rutting Test
Fatigue Test
Completed Fatigue Test
Completed Rutting Test
ALF1
ALF2
4.75 mm Mix Tests
Construction
Construction
Construction
Construction
Construction
Construction

- **28 mm +/- 4 mm** Thickness achieved
- Tack coat of CRS-1 @ 0.07 gallons/s.y.

- **Warm Mix Asphalt Mix**
 - 45 mile haul distance in congested area
 - Delivered about 255°F (124°C)
 - Mix was foamed (water)
 - Workable, with no clumps and easy hand-work
Construction

• Rolling and Achieving Density
 – Initial rolling was 2 vibratory and 1 static
 – 15,000 lb roller (DD 70-HF) as breakdown
 – 8,000 lb (DD 34-HF) as finish
 – 13% air voids rather than 10% air void target
 – VaDOT & contractor identified 27,000 lb roller is ideal
Construction

12 foot

44 foot

22 foot
Historical Sequences

1. Lane 8 with Unaged Overlay
2. Lane 10 with Aged Overlay
Historical Sequence – Unaged Overlay
Historical Sequence – Unaged Overlay

3-inch lift

3-inch lift

Structure Built in 2002

Site 3 Fatigue loading
Dec 2005 – May 2006 +
Feb-March 2008
Historical Sequence – Unaged Overlay

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010
Historical Sequence – Unaged Overlay

4 weeks of accelerated aging via radiant heaters
April - May 2010
Historical Sequence – Unaged Overlay

Milling
1-inch 4.75mm NMAS inlay
Installed June 2010
4 weeks of accel. aging Jun–Jul. 2010

BUT ONLY AGING ON THE HALF-SECTION WITHOUT THE 4.75mm Inlay.

The 4.75mm treatment was left unaged.
Historical Sequence – Unaged Overlay

Reserved site 4 is loaded
September 2010 to April 2011
Historical Sequence – AGED Overlay

...lets review one more time...
Historical Sequence – Unaged Overlay

3-inch lift
3-inch lift

Structure Built in 2002

Site 3 Fatigue loading
Dec 2005 – May 2006 +
Feb-March 2008
Historical Sequence – Unaged Overlay

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010
Historical Sequence – Unaged Overlay

4 weeks of accelerated aging via radiant heaters
April - May 2010
Historical Sequence – Unaged Overlay

Milling
1-inch 4.75mm NMAS inlay
Installed June 2010
Historical Sequence – Unaged Overlay

4 weeks of accel. aging Jun–Jul. 2010

BUT ONLY AGING ON THE HALF-SECTION WITHOUT THE 4.75mm Inlay.

The 4.75mm treatment was left unaged.
Historical Sequence – Unaged Overlay

Reserved site 4 is loaded September 2010 to April 2011
Historical Sequence – Unaged Overlay
Historical Sequence – AGED Overlay
Historical Sequence – AGED Overlay

3-inch lift
3-inch lift

Structure Built in 2002

Site 3 Fatigue loading
Dec 2005 – May 2006
Historical Sequence – AGED Overlay

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010
Historical Sequence – **AGED** Overlay

Milling
1-inch 4.75mm NMAS inlay
Installed June 2010
Historical Sequence – AGED Overlay

8 weeks of accelerated aging via radiant heaters
June-August 2010
Reserved site 4 is loaded
September 2010 to April 2011
Historical Sequence – AGED Overlay

...lets review one more time...
Historical Sequence – AGED Overlay

3-inch lift

3-inch lift

Structure Built in 2002

Site 3 Fatigue loading
Dec 2005 – May 2006
Historical Sequence – AGED Overlay

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010
Historical Sequence – AGED Overlay

Milling
1-inch 4.75mm NMAS inlay
Installed June 2010
Historical Sequence – **AGED** Overlay

8 weeks of accelerated aging via radiant heaters
June-August 2010
Reserved site 4 is loaded September 2010 to April 2011
Development of Fatigue Cracks under APT Loading

The development of fatigue cracks within loaded wheel paths are illustrated.
A1:B = Effect of Aging on
Conventional HMA
(no preservation treatment)

A2:C = Effect of
"New" unaged
4.75mm on Aged
Pavement
Lane 10
Air Blown

A1:B = Effect of Aging on Conventional HMA (no preservation treatment)

A2:C = Effect of “Old” Aged 4.75mm on Aged Pavement

Site 3 Site 4
Vertical Crack Profiles

• Cores taken across the width of the wheel path
Vertical Crack Profiles
Vertical Crack Profiles

L10S3

101'

107'

113'

119'

L10S4

101'

103-106'

107'

113'

119'

124'
Findings

• Superpave 4.75mm NMAS mixture designed with 20% RAP content and WMA production

• Large rollers recommended to achieve density even though fine mix and higher binder content

• Aged pavements developed top-down cracking rather than bottom-up
Findings

• Thin overlay allows 8-year-old-PLUS structure to perform like a 3-year-old structure
 – 425,000 - 500,000 passes to first crack

• While without milling-and-overlay the structure performed significantly less
 – 50,000 passes to first crack

• When the overlay was aged, the overlay provides little benefit
Thank You.
Questions?
Comments?

• Nelson Gibson
 nelson.gibson@dot.gov
 202-493-3073

• Jack Youtcheff
 Jack.Youtcheff@dot.gov
 202-493-3090

• Trenton Clark
 tclark@vaasphalt.com
 804-288-3169

• Kevin McGhee
 Kevin.McGhee@VDOT.Virginia.gov
 434-293-1956
Characteristics of Accelerated Loading

- 16,000 lb single wheel load
- 425 super single tire
- 120 psi inflation
- 19°C temperature control
- Lateral wheel wander (normal distribution)
<table>
<thead>
<tr>
<th></th>
<th>CHIP SEAL</th>
<th>THIN OVERLAY</th>
<th>SLURRY SEAL</th>
<th>MICROSURFACING</th>
<th>CHIP SEAL</th>
<th>THIN OVERLAY</th>
<th>SLURRY SEAL</th>
<th>MICROSURFACING</th>
<th>OTHER</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15% 300°C</td>
<td>15% 300°C</td>
<td>25% Foam</td>
<td>25% 300°C Foam</td>
<td>40% 300°C</td>
<td>25% 250°C Foam</td>
<td>40% 250°C Foam</td>
<td>40% 250°C Foam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25% 300°C Foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25% 300°C Chem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40% 300°C Chem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>40% 300°C Foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>25% 250°C Foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>25% 250°C Chem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>40% 250°C Foam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40% 250°C Chem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Virginia DOT Mix Design

<table>
<thead>
<tr>
<th>Sieves #</th>
<th>Bealton sand</th>
<th>#10</th>
<th>RAP</th>
<th>Nat. Sand</th>
<th>Bag House</th>
<th>Mix Design</th>
<th>Gradation Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾”(19mm)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>½”(12.5mm)</td>
<td>100</td>
<td>100</td>
<td>99.8</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99.7</td>
</tr>
<tr>
<td>3/8”(9.5mm)</td>
<td>100</td>
<td>100</td>
<td>95</td>
<td>100</td>
<td>100</td>
<td>99.1</td>
<td>97.0</td>
</tr>
<tr>
<td>#4 (4.75mm)</td>
<td>96</td>
<td>96</td>
<td>67</td>
<td>98</td>
<td>100</td>
<td>92.3</td>
<td>87.6</td>
</tr>
<tr>
<td>#8 (2.36mm)</td>
<td>62</td>
<td>66</td>
<td>50</td>
<td>86</td>
<td>100</td>
<td>68.7</td>
<td>60.1</td>
</tr>
<tr>
<td>#16(1.18mm)</td>
<td>38</td>
<td>45</td>
<td>39</td>
<td>66</td>
<td>100</td>
<td>45.7</td>
<td>43.1</td>
</tr>
<tr>
<td>#30(0.60mm)</td>
<td>26</td>
<td>33</td>
<td>29</td>
<td>36</td>
<td>100</td>
<td>31.9</td>
<td>31.0</td>
</tr>
<tr>
<td>#50(0.30mm)</td>
<td>17</td>
<td>24</td>
<td>21</td>
<td>12</td>
<td>100</td>
<td>21.6</td>
<td>21.4</td>
</tr>
<tr>
<td>#100(0.15mm)</td>
<td>10</td>
<td>18</td>
<td>14</td>
<td>5</td>
<td>98</td>
<td>14.7</td>
<td>15.1</td>
</tr>
<tr>
<td>#200(.075mm)</td>
<td>5.2</td>
<td>12.4</td>
<td>9.3</td>
<td>2.5</td>
<td>95</td>
<td>10.3</td>
<td>10.4</td>
</tr>
<tr>
<td>Blend %</td>
<td>26</td>
<td>44</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Virginia DOT Mix Design

<table>
<thead>
<tr>
<th>Specification Criteria</th>
<th>Job Mix Formula</th>
<th>Produced Mix G_{mm} From FHWA: 2.595</th>
<th>From Contractor: 2.584</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTM</td>
<td>Design</td>
<td>5%</td>
<td>4.4%</td>
</tr>
<tr>
<td></td>
<td>Production</td>
<td>3% - 6%</td>
<td>-</td>
</tr>
<tr>
<td>VFA</td>
<td>Design</td>
<td>70% - 75%</td>
<td>74%</td>
</tr>
<tr>
<td></td>
<td>Production</td>
<td>70% - 80%</td>
<td>-</td>
</tr>
<tr>
<td>VMA</td>
<td></td>
<td>16.5% minimum</td>
<td>16.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.9%</td>
<td>16.9% - 16.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.2 %– 16.0%</td>
<td>14.96%</td>
</tr>
<tr>
<td>V_{be}</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dust to Binder</td>
<td>1 – 2</td>
<td>1.98</td>
<td>1.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Virginia DOT Formula</th>
<th>Contractor’s aggregate G_{SB} = 2.789</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHWA extracted</td>
<td>2.813</td>
<td></td>
</tr>
<tr>
<td>G_{SB}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.98

2.11
Background and Motivation

- Embrittlement of In-Situ Asphalt Binder