Impact of Thin Overlay on Top-Down Crack Resistance of Aged Pavement

Wednesday, August 29, 2012

Nelson Gibson, Jack Youtcheff FHWA Office of Infrastructure R&D Xicheng Qi (formerly) SES Group & Associates

Trenton Clark Virginia Asphalt Pavement Association Kevin McGhee Virginia Department of Transportation

Outline

- Background & Motivation
- Mix Design
- Construction
- Performance
- Findings

Background and Motivation

- Previous ALF research inspired the study
- The "Absence of Preservation" Scenario

Background and Motivation

- Previous ALF research inspired the study
- The "Absence of Preservation" Scenario

Embrittlement of In-Situ Asphalt Binder

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Background and Motivation

- TSP RD&I Roadmap
 - Design #02 Determining Pavement Preservation Treatment Lives and Related Pavement Life Extension.
 - Design #06 Integrating Pavement Preservation into the Design Process.
 - Materials #01 Mechanical Binder Properties to Predict Surface Treatment Performance.

Background and Motivation

- TSP RD&I Roadmap
 - Performance #03 Quantify Performance and Benefits of Various Pavement Preservation Treatments and Develop Pavement
 Preservation Treatment Performance Models.
 - Performance # 04 Quantifying the Benefits of Pavement Preservation Treatments.

Embrittlement of In-Situ Asphalt Binder

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Preservation Treatment Options?

- Chip Seal?
- Microsurfacing?
- Fog Seal?
- Thin Overlay?

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

- 28 mm +/- 4 mm Thickness achieved
- Tack coat of CRS-1 @ 0.07 gallons/s.y.
- Warm Mix Asphalt Mix
 - 45 mile haul distance in congested area
 - Delivered about 255°F (124°C)
 - Mix was foamed (water)
 - Workable, with no clumps and easy hand-work

- Rolling and Achieving Density
 - Initial rolling was 2 vibratory and 1 static
 - 15,000 lb roller (DD 70-HF) as breakdown
 - 8,000 lb (DD 34-HF) as finish
 - 13% air voids rather than 10% air void target
 - VaDOT & contractor identified 27,000 lb roller is ideal

ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Historical Sequences

Lane 8 with Unaged Overlay
 Lane 10 with Aged Overlay

3-inch lift3-inch lift

Structure Built in 2002

Site 3 Fatigue loading Dec 2005 – May 2006 + Feb-March 2008

3-inch lift 3-inch lift

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010

3-inch lift 3-inch lift

4 weeks of accelerated aging via radiant heaters April -May 2010

Milling 1-inch 4.75mm NMAS inlay Installed June 2010

3-inch lift 3-inch lift

4 weeks of accel. aging Jun–Jul. 2010

BUT ONLY AGING ON THE HALF-SECTION <u>WITHOUT</u> THE 4.75mm Inlay.

The 4.75mm treatment was left unaged.

Reserved site 4 is loaded September 2010 to April 2011

Historical Sequence – <u>AGED</u> Overlay

3-inch lift

...lets review one more time...

3-inch lift3-inch lift

Structure Built in 2002

Site 3 Fatigue loading Dec 2005 – May 2006 + Feb-March 2008

3-inch lift 3-inch lift

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010

3-inch lift 3-inch lift

4 weeks of accelerated aging via radiant heaters April -May 2010

Milling 1-inch 4.75mm NMAS inlay Installed June 2010

3-inch lift 3-inch lift

4 weeks of accel. aging Jun–Jul. 2010

BUT ONLY AGING ON THE HALF-SECTION <u>WITHOUT</u> THE 4.75mm Inlay.

The 4.75mm treatment was left unaged.

Reserved site 4 is loaded September 2010 to April 2011

Historical Sequence – Unaged Overlay

3-inch lift3-inch lift

Structure Built in 2002

Site 3 Fatigue loading Dec 2005 – May 2006

3-inch lift 3-inch lift

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010

3-inch lift 3-inch lift

Milling 1-inch 4.75mm NMAS inlay Installed June 2010

3-inch lift 3-inch lift

8 weeks of accelerated aging via radiant heaters June-August 2010

3-inch lift 3-inch lift

Reserved site 4 is loaded September 2010 to April 2011

3-inch lift 3-inch lift

...lets review one more time...

3-inch lift3-inch lift

Structure Built in 2002

Site 3 Fatigue loading Dec 2005 – May 2006

3-inch lift 3-inch lift

Site 4 Reserved and left untouched

Natural aging and weathering from 2002 construction up to June 2010

3-inch lift 3-inch lift

Milling 1-inch 4.75mm NMAS inlay Installed June 2010

3-inch lift 3-inch lift

8 weeks of accelerated aging via radiant heaters June-August 2010

3-inch lift 3-inch lift

Reserved site 4 is loaded September 2010 to April 2011

Development of Fatigue Cracks under APT Loading

The development of fatigue cracks within loaded wheel paths are illustrated

Lane 8 Control 70-22

A1:B = Effect of Aging on Conventional HMA (no preservation treatment)

A2:C = Effect of "New" unaged 4.75mm on Aged Pavement

Lane 10 Air Blown

A1:B = Effect of Aging on Conventional HMA (no preservation treatment)

A2:C = Effect of "Old" Aged 4.75mm on Aged Pavement

Vertical Crack Profiles

• Cores taken across the width of the wheel path

Vertical Crack Profiles

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Vertical Crack Profiles

Findings

- Superpave 4.75mm NMAS mixture designed with 20% RAP content and WMA production
- Large rollers recommended to achieve density even though fine mix and higher binder content
- Aged pavements developed top-down cracking rather than bottom-up

Findings

- Thin overlay allows 8-year-old-<u>PLUS</u> structure to perform like a 3-year-old structure
 425,000 - 500,000 passes to first crack
- While without milling-and-overlay the structure performed significantly less

- 50,000 passes to first crack

• When the overlay was aged, the overlay provides little benefit

Thank You. Questions? Comments?

٠

٠

- Nelson Gibson <u>nelson.gibson@dot.gov</u> 202-493-3073
- Jack Youtcheff
 <u>Jack.Youtcheff@dot.gov</u>
 202-493-3090

- Trenton Clark <u>tclark@vaasphalt.com</u> 804-288-3169
- Kevin McGhee <u>Kevin.McGhee@VDOT.Virginia.gov</u> 434-293-1956

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Characteristics of Accelerated Loading

- 16,000 lb single wheel load
- 425 super single tire
- 120 psi inflation
- 19°C temperature control
- Lateral wheel wander (normal distribution)

CHIP SEAL	THIN OVERLAY	SLURRY SEAL	MICROSUFACING	CHIP SEAL	6 THIN OVERLAY	SLURRY SEAL	8 MICROSURFACING	6 OTher	Other	11	12
15% 300°C	15% 300°C	25% 300°C Foam	25% 300°C Chem.	40% 300°C Foam	40% 300°C Chem.	25% 250°C Foam	25% 250°C Chem.	40% 250°C Foam	40% 250°C Chem.		

Virginia DOT Mix Design

Sieves #	Bealton sand	#10	RAP	Nat. Sand	Bag House	Mix Design	Gradation Check
³ ⁄4"(19mm)	100	100	100	100	100	100	100
¹ ⁄ ₂ "(12.5mm)	100	100	99.8	100	100	100	99.7
3/8"(9.5mm)	100	100	95	100	100	99.1	97.0
#4 (4.75mm)	96	96	67	98	100	92.3	87.6
#8 (2.36mm)	62	66	50	86	100	68.7	60.1
#16(1.18mm)	38	45	39	66	100	45.7	43.1
#30(0.60mm)	26	33	29	36	100	31.9	31.0
#50(0.30mm)	17	24	21	12	100	21.6	21.4
#100(0.15mm)	10	18	14	5	98	14.7	15.1
#200(.075mm)	5.2	12.4	9.3	2.5	95	10.3	10.4
Blend %	26	44	20	10	1	-	-

Virginia DOT Mix Design

•	ification Cri gn = 50 gyra		_	Produced Mix Gmm From FHWA: 2.595			
Volum	netrics	Virginia DOT	Job Mix Formula	FHWA extracted	actor: 2.584 Contractor's aggregate G _{SB} = 2.789		
	Design	5%	4.4%	-			
VTM	Production	3% - 6%	-	4.21% - 3.98%			
	Design	70% - 75%	74%	-			
VFA	Production	70% - 80%	-	75.1% - 76.2%	5.1% - 76.2% 74.0% -75.2%		
VI	ЛА	16.5% minimum	16.9%	16.9% - 16.7%	16.2 %– 16.0%		
V	be	-	-	14.96%	14.86%		
Dust to based on	Binder effective halt	1 – 2	1.98	1.99	2.11		

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Background and Motivation

• Embrittlement of In-Situ Asphalt Binder

