Diamond Grinding

August 29th 2012 Nashville, TN

Matt Ross P.E. Penhall Company

making life a little smoother

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Diamond Grinding

- Purpose
 - Smooth the surface
 - Reestablish skid resistance
 - Correct cross-slope
- Used for:
 - Faulted joints
 - Wheel track wear
 - Drainage slope improvements
 - Polished pavement

What is Diamond Grinding?

Removal of thin surface layer of hardened PCC using closely spaced diamond saw blades

Diamond Grinding

- Uses closely-spaced, diamond saw blades mounted on a rotating drum
- Removes weathered concrete
- Corrects surface irregularities
- Provides smooth riding surface

Diamond Grinding – Candidate Distresses

- Faulting at joints and cracks
- Built-in or construction roughness
- Wheel path rutting caused by studded tires
- Polished concrete surface
- Unacceptable noise level
- Permanent upward slab warping
- Inadequate transverse slope

Useful Information

- Year the pavement was built
- Pavement type (plain, reinforced)
- Transverse joint spacing
- Aggregate sources
- Aggregate hardness

Useful Information (cont.)

- Aggregate/sand quantity/abrasiveness
- Aggregate size and exposure
- Existing pavement profile (California Profilograph)
- Faulting index or average faulting
- Studded tire rut depth
- Amount of warping

Diamond Grinding of Roadways Was Invented in California

- Diamond grinding was first used in California in 1965 on a 19-year old section of I-10 to eliminate significant faulting (Neal and Woodstrom 1976).
- In 1983, CPP was conducted on this same pavement section, including the use of additional grinding to restore the rideability and skid resistance of the surface. In 1997, the process was repeated.
- Since its first use in 1965, the use of diamond grinding has grown to become a major element of PCC pavement preservation.

Effectiveness of Diamond Grinding CALTRANS

 CALTRANS has determined that the average life of a diamond ground pavement surface is 17 years and that a pavement can be ground at least three times without affecting pavement structurally. See ACPA-SW for full report

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Rough Pavement

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Basic Components

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Tracing Profile Only Gives Uniform Depth Cut

Should Remove High Spots

Selecting Saw Blades

- Choose blades with appropriate:
 - Bond hardness
 - Diamond concentration
- Optimize grinding head cutting life
- Even appearance of final surface

Blades and Spacers

Setting up Grinding Head

- Select blade spacing based on aggregate hardness
 - Hard (close spacing)
 - Soft (wide spacing)
- Do not line up blade segments
 - avoids vibration

Operating Grinding Machine

Important Aspects of Operation:

- Grinding head blade setup
- Grinding head power
- Machine speed
- Steering

Aggregate Hardness

SOFT MEDIUM HARD

Limestone Dolomite Coral River Gravel River Gravel Trap Rock Granite

Granite Flint Chert Quartz River Gravel

	Height	← Land A	ove
	Range	Hard Aggregate	Soft Aggregate
Grooves Land Area Height	0.1"-0.15" 0.06"-0.13" 0.06"	0.1"-0.15" 0.08" 0.06"	0.1"-0.15" 0.1" 0.06"
Grooves/ft	50-60	53-60	50-54

and and and

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Bond Hardness

Diamonds Break Free

Diamonds Polish Before Metal Segments

Holidays

- Result from unground areas
- Lower grinding head to avoid
- Specifications allow up to about 5% of area
- Do not adjust head for holidays less than 2.5 ft²

Cutting Through Bumps

- Machine weight is ballast
- To cut bumps must control:
 - Forward speed
 - Grinding head depth
 - Down pressure
- To verify check for:
 - Variation in cut depth along longitudinal cut line
 - Vertical cut depth match from pass to pass

Diamond Grinding Removes Significant Curling and Warping

Checking Vertical Match of Passes

Poor Match Between Passes

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Dogtails

- Result from no horizontal overlap
- Requires steady steering of grinder
- Attempt to maintain 1-2 in (25-50 mm) horizontal overlap

Poor Overlap Between Passes

Improper Blade Spacing

60 Blades vs 52 Blades per Foot

Result of Grinding

Longitudinal texture with desirable friction characteristics

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Friction

Key Elements for Success

- Understand the pavement conditions
- Set up the grinding head properly
- Operate the grinding machine properly
- Monitor the operation

Evaluate Ride Quality

- California Profilograph (or similar)
- Take traces before and after grinding
- Should be able to provide 65% improvement over pre-grind profile
- Verify profile index against specification requirement

Slurry Removal

- Inert material
- Vacuum systems remove most slurry
- Deposit along shoulder (rural)
- Deposit into trucks for disposal (urban)

Slurry Removal

- Slurry is a by product of diamond grinding
- Slurry can be recycled in a very simple process
- By separating the solids from the water we create two products

Fine Inert dirt. This can be used for many different things. Fill, re-used in new concrete products or other applications.

The water is re-used during the diamond grinding process, thus eliminating the need for large quantities of water

• And can be treated to meet environmental requirements for discharge upon completion of the work.

Diamond Grinder Collecting Slurry

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Small Projects Collecting Slurry

Dewatering Pond

Brandt System

- This process is very cost effective and can be performed very simply by using a shaker, a centrifuge and a vertical clarifier.
- This system has been used by all the diamond grinding contractors for the last 8 years.

Mobil Dewatering Plant

BMP Manual

IGGA International Grooving & Grinding Association

Your Pavement Preservation Resource since 1972

www.igga.net

eing & Condex; Asserbalish (CDVAL)s; a non-profil Thank Asserbation Transled in 1977 by a proop o existent provide private brace brace brained at the intercented without a brain process for wattern or strati controls and applait in 1855, the 2024 privat in affiguites with the American Downlow Records Association (ACH4) to openant is ready formed Consists Reserved Reducation Division. The USA (ACR CPR Database range advectors the Archivers) response and Instantion rights in he materizes of optimized powment surfaces, concrete powment realization and powment preservation around its outs. The mission of the CEA to to serve as the loading promultanal and technical research for aprophers and proper use of damage try and phoneny as well as PCC presentation and restaration. For neuro information, vial exemptions

handling

BEST MANAGEMENT PRACTICES

diamond grinding

13573 Route BW • West Consarkle, NY 12192 • www.loga.net • (518) 731-7458

2012 NATIONAL PAVEMENT PRESERVATION CONF

Diamond Grinding Trigger Values

Concrete Pavement Preservation Workshop

Chapter 9. Diamond Grinding and Grooving

		JPCP			JRCP			CRCP	
Traffic Volumes ¹	High	Med	Low	High	Med	Low	High	Med	Low
Faulting, mm avg (in avg)	2.0 (0.08)	2.0 (0.08)	2.0 (0.08)	4.0 (0.16)	4.0 (0.16)	4.0 (0.16)	N/A		
Skid Resistance			N	1inimum Lo	ocal Accepta	able Levels			
PSR ²	3.8	3.6	3.4	3.8	3.6	3.4	3.8	3.6	3.4
IRI, m/km (in/mi)	1.0 (63)	1.2 (76)	1.4 (90)	1.0 (63)	1.2 (76)	1.4 (90)	1.0 (63)	1.2 (76)	1.4 (90)

Table 9.1. Trigger values for diamond grinding (Correa and Wong 2001).

Notes:

1. Volumes: High ADT>10,000; Med 3,000<ADT<10,000; Low ADT<3,000.

PSR = Present serviceability rating.

Proposed Trigger Values and Expected Life - MTAG

		(Climate	Regior	1	Tr	affic AI	DT	t)2
Treatment	Trigger (National)	Desert	Valley	Coastal	Mountain	<5000	>5000;<30000	>30000	Life of Treatmen (Year)	Estimated Cost (\$
Crack Resealing	>1/4 inch	>1/4	>1/4	>1/4	>1/4	>1/4	>1/4	>1/4	4 - 7	\$27.7k - 42.4 k/ln mi
Diamond Grinding	Faulting > 1/4 inch; Ride 95 in/mile	>1/4 >190	>1/4 >95	>1/4 >95	>1/4 >190	>1/4 >190	>1/4 >125	>1/4 >95	10 - 18	\$30.0k - 80.1k/ln mi
Partial Slab Repair	Surface distress - Patches <1.2 yd ²	<1.2	<1.2	<1.2	<2.4	<2.4	<1.2	<1.2	8 - 12	\$135 - 270/yd ³
Isolated Slab Replacement	3rd stage cracking or unstable slabs	Sam AD	ie Trigg T<5000	er Valu , Distri	ie. For o ct make	desert, n s decisio	nountair on to rep	n, or bair.	8 - 12	\$4000 - \$8000/slab
Dowel Bar Retrofit	LTE <60%, Faulting>1/4 inch, Max 10% Cracking	<40 >1/4 20	<70 >1/4 10	<70 >1/4 10	<50 >1/4 20	<50 >1/4 20	<70 >1/4 10	<70 >1/4 10	8 - 17	\$141k - 177k/ln mi

MoDOT Ride Spec

Table 1	
International Roughness Index Inches Per Mile	Percent of Contract Price
40 or less	105
40.1 - 54	103
54.1 - 80	100
	2 (2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
80.1 or greater Table 2	100ª
30.1 or greater Table 2 International Roughness Index Inches Per Mile	100ª Percent of Contract Price
0.1 or greater Table 2 International Roughness Index Inches Per Mile	100ª Percent of Contract Price 103
0.1 or greater Table 2 International Roughness Index Inches Per Mile 7 or less 7.1 – 134	100ª Percent of Contract Price 103 100

Profile Testing Equipment

Development of the Next Generation Low Maintenance Concrete Surface

The Process

- Development Work-TPTA
- Proof of Concept- MnROADs Low Volume Roads Test Sections

 Full Scale Test Section with Production Grinders

NGCS Compared to CDG

What's Different about NGCS

Space Provides Cooling and Debris Removal

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Equipment Head Differences

NGCS Head

Conventional Diamond Grinding Head

NGCS Head

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Single or Two Pass Construction

TPTA NGCS Research

• Effect of Groove Spacing, Width, Depth, Insert

Concrete Texture Types

Conventional

Transverse Tine Diamond Grinding Twice as Loud Traffic 100-104dBA 103-110dBA 99-101dBA 101-106 dBA **Next Generation** Longitudinal Tine **Concrete** Surface

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Conventional Diamond Grind vs Next Generation Concrete Surface

QUESTIONS OR COMMENTS

International Grooving and Grinding Association

American Concrete Pavement Association

Shindrilt Jun

Matt Ross P.E. Penhall Company 9407 W 146th Place Overland Park, Ks 66221 (816) 803-9331 Mross@Penhall.com