ASPHALT PAVEMENT REJUVENATION

Robert E. Boyer, PhD, PE Consultant – Asphalt Pavements

Asphalt Pavement Rejuvenation

7

"Asphalt Pavement Rejuvenators"

Importance of Rejuvenators

Understanding Rejuvenators

Using Rejuvenators

"Asphalt Pavement Rejuvenators" OVERVIEW - 1

Importance of Rejuvenators

Pavement Preservation

– Economic Benefit

Pavement Preservation Techniques

Pavement Preservation Timing

Asphalt Binder Prices Cost History: January 2001 thru January 2012

>\$800/Ton: 2008

.....

?\$700/Ton: 2012

Average Cost: HMA In-Place \$21/ton to \$97 ton past 9 years.

AC	Cost	Impact	on HM	IA & Pa	iving		
Liq. AC COST ton	AC COST lb.	Lbs. AC in 1 Ton HMA @ 6%	AC Cost in 1 Ton HMA	AC Cost SY 1.5" OL	AC Cost Per Lane Mile (11'w)	HMA COST PER TON IN-PLACE	OL Cost for One Lane Mi.
\$150	\$0.08	120	\$9.00	\$0.75	\$4,840	\$21	\$11,012
\$200	\$0.10	120	\$12.00	\$1.00	\$6,453	\$28	\$14,683
\$250	\$0.13	120	\$15.00	\$1.25	\$8,066	\$35	\$18,354
\$300	\$0.15	120	\$18.00	\$1.50	\$9,680	\$41	\$22,025
\$350	\$0.18	120	\$21.00	\$1.75	\$11,293	\$48	\$25,696
\$400	\$0.20	120	\$24.00	\$2.00	\$12,906	\$55	\$29,366
\$450	\$0.23	120	\$27.00	\$2.25	\$14,519	\$62	\$33,037
\$500	\$0.25	120	\$30.00	\$2.50	\$16,133	\$69	\$36,708
\$550	\$0.28	120	\$33.00	\$2.75	\$17,746	\$76	\$40,379
\$600	\$0.30	120	\$36.00	\$3.00	\$19,359	\$83	\$44,050
\$650	\$0.33	120	\$39.00	\$3.25	\$20,972	0 <i>0</i> \$	\$47 720
\$700	\$0.35	120	\$42.00	\$3.50	\$22,586	\$97	\$51,391

Cost for 1 lane mile - \$11K to \$51K.

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Importance of Rejuvenators Economic Benefit

10 Miles of Rejuvenator

FOR

1 Mile of HMA Overlay

Importance of Rejuvenators

Economic Benefit

What is a **REJUVENATOR?**

"Asphalt Pavement Rejuvenators" OVERVIEW - 2

Importance of Rejuvenators

Understanding Rejuvenators

• Using Rejuvenators

"Asphalt Pavement Rejuvenators" OVERVIEW - 2

- Understanding Rejuvenators
 - Chemical Composition of Asphalt
 - Asphalt Components/Fractions
 - Asphaltenes & Maltenes Fractions
 - Maltenes Classes
 - Relationship: Asphaltenes & Maltenes

CHEMICAL COMPOSITION OF ASPHALT

- From Organic Matter
- 90-95% C & H -"Hydrocarbon"
- Heteroatoms [N, O, S]
- Trace Metals [Va, Ni, Fe]
- Molecular Structure -Extremely Complex
- State of the Practice Separate Components by Solubility

Table 1.1 Elementa	I Analysis	of Four A	lsphalt C	ements
Asphalt Cement	A	B	<u>C</u>	D
Carbon, percent	83.77	85.78	82.90	86.77
Hydrogen, percent	9.91	10.19	10.45	10.93
Nitrogen, percent	0.28	0.26	0.78	1.10
Sulfur, percent	5.25	3.41	5.43	0.99
Oxygen, percent	0.77	0.36	0.29	0.20
Vanadium, ppm	180.	7.	1380.	4.
Nickel, ppm	22.	0.4	109.	6.

INFLUENCE OF CHEMICAL COMPOSITION OF ASPHALTS ON PERFORMANCE, PARTICULARLY DURABILITY

By

FRITZ S. ROSTLER Director of Research

and

RICHARD M. WHITE Research Chemist

Golden Bear Oil Co. Bakersfield, Calif.

Reprinted from AMERICAN SOCIETY FOR TESTING MATERIALS Special Technical Publication No. 277, pp 64-88 1959

Asphalt Binder Fractions

- <u>Asphaltenes (A)</u> fraction of asphalt insoluble in n-pentane.
 - Bodying agent
- <u>Maltenes</u> fraction of asphalt material after precipitation of asphaltenes.
 - Four functional classes of Maltenes

Asphaltenes Fraction/ Maltenes Functional Classes

Fractional	General	Definition	Chemical	Significant
Component	Description	ASTM D2006	Reactivity	Function
А	High Molecular	Insoluble in	Very Low	Bodying
Asphaltenes	Wt. Product	n-pentane		Agent
PC	Polar	Precipitates with	High	Peptizer for
Polar Compounds	Compounds	85% H₂SO₄		Asphaltenes
A ₁	Unsat. Resinous	Precipitates with	High	Solvent for
1st Acidiffins	Hydrocarbons	Concentrated H ₂ SO ₄		Peptized A
A ₂	Slightly Unsat.	Precipitates with	Low	Solvent for
2nd Acidiffins	Hydrocarbons	Fuming H₂SO₄		Peptized A
S	Wax - Saturated	Nonreactive with	Low	Gelling
Sat. Hydrocarbons	Hydrocarbons	Fuming H ₂ SO ₄		Agent

Petroleum Asphalt is comprised of two fractional components:

ASPHALTENES and **MALTENES**.

ASPHALT FRACTIONAL COMPONENTS TYPICAL ASPHALT BINDER

ASPHALT FRACTIONAL COMPONENTS TYPICAL ASPHALT BINDER

Aging - Reduction of maltenes begins at the HMA plant due to the extreme heating

- Increase in chemical activity

Aging continues over pavement life by:

- Exposure to the UV rays
- Environment
- Oxidation Process
- Stripping Action of Water
- Traffic Wear

AGING OVER PAVEMENT LIFE

Understanding Rejuvenators

• CRITERIA FOR A REJUVENATOR must involve two important phenomena:

 Must contain Maltenes Fraction, to balance Maltenes to Asphaltenes ratio

 Must penetrate binder to facilitate for chemical activity [fluxing/absorption]

ASPHALT FRACTIONAL COMPONENTS TYPICAL ASPHALT BINDER

Rejuvenator Test Sections

"Asphalt Pavement Rejuvenators"

Importance of Rejuvenators

Understanding Rejuvenators

Using Rejuvenators

"Asphalt Pavement Rejuvenators" OVERVIEW - 3

Using Rejuvenators

- Pavement Project Candidates
- Specifications [Material/Performance]
- Performance versus Skid Resistance
- Other Requirements [Equipment/ Experience/ Environmental Conditions]
- Application Rate

Using Rejuvenators – [Excellent Candidates]

Using Rejuvenators – [Unsuitable Candidates]

- High speed Roads & Expressways
- Runways & High Speed Taxi Exits
- Pavement w/Excessive Distress
 - Base and/or Subgrade Failure
 - Structural Distress without Repair: e.g., Alligator Cracking; Shoving

Using Rejuvenators – [Material Specifications, If Desired]

		ECIFICAT		Requirements	
Tests	AST		AASHTO	MIN.	MAX.
Tests on Emulsion:					
Viscosity @ 25°C, SFS	D-24	44 -	T-59	15	40
	D-244(mod	l.) T-59(m	od.) 60	65	
Miscibility Test ²			T-59(mod.)	No Coagulati	on
Sieve Test, %W ³		· · · · ·	T-59(mod.)	-	0.1
Particle Charge Test	D-24		T-59	Positive	
Percent Light Transmittanc	e⁴ GB	(GB	-	30
Tests on Residue from Dist	illation:				
Flash Point, COC, °C	D-92	2 -	T-48	196	-
Viscosity @ 60°C, cst	D-44	45 -	-	100	200
Asphaltenes, %w		006-70 -	-	-	1.00
Maltene Dist. Ratio	D-2	006-70 -	-	0.3	0.6
$\frac{PC + A_{1}^{5}}{S + A_{2}}$					
PC/S Ratio ⁵	D-2	006-70 -	_	0.5	- Saturated
Hydrocarbons, S^5		006-70 -	-	21	28
,					
			Pro	oduct Pur	chase Des
2012 NATIONAL PAVEMENT	PRESERVAT	ION CONFE	RENCE ROAL	D TRIP: DRIVIN	G THE MESSAGE

scription

FOR CHANGE

Using Rejuvenators – [Material Performance, Desired]

Table 1. Pavement Three (3) Years or Less in Age							
Item	Property of Recovered Binder ²	Requirement	Test Method				
1	Absolute Viscosity 60 °C, P		ASTM D 2171				
2a	Complex Modulus _{60 °C} , G*	$\geq 25\%$ Decrease ²	AASHTO T 315				
2b	Viscosity 60 °C, $\eta = G^* / \omega$ Pa·S						
2c	Phase Angle _{60 °C} , δ, °	Report					
Table 2. Pavement More than Three (3) Years in Age							
Item	Property of Recovered Binder ²	Requirement	Test Method				
1	Absolute Viscosity 60 °C, P		ASTM D 2171				
2a	Complex Modulus _{60 °C} , G*, kPa	\geq 40% Decrease ²					
2b	Viscosity 60 °C, $\eta^* = G^* / \omega Pa^*s$		AASHTO T 315				
2c	Phase Angle _{60 °C} , δ, °	Report					
	_						

Using Rejuvenators – [Material Performance, <u>CONCERN</u>]

Trade-Off between ----

-Performance

»AND

–Friction Resistance

 <u>MOST IMPORTANT PRINCIPAL</u> for --–Using Rejuvenators!!!!!

Using Rejuvenators – [Material Performance, <u>CONCERN</u>]

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Using Rejuvenators – [Equipment]

Using Rejuvenators – [Construction]

Experience/Certification:

Years/# Projects Successfully Complete

Environmental Conditions:

- Dry Surface
- Precipitation Forecast: Prohibit, when >0.1-in < 4 hrs.
- Ambient Temperature: > 40 degrees F

Spray Application Rates Rejuvenators

-0.03 – 0.08 gal/sy -"Ring Test" -Test Patches -Test Strips -DO NOT OVER APPLY

"Asphalt Pavement Rejuvenators" [SUMMARY]

Importance of Rejuvenators

Understanding Rejuvenators

Using Rejuvenators

Project Documentation

Evaluation of Seal Coat Runway 16–34 Lajes Field, Azores

Rejuvenator

by J. E. Pickett

Geotechnical Laboratory U.S. Army Engineer Waterways Experiment Station P.O. Box 631 Vicksburg, Mississipi

March 1983

Lajes Field, Azores

Pickett – Lajes Field, Azores [1983]

Phase I

Center 100-ft-wide area All other areas **Application Rate**

0.053 gal/sq yd 0.061 gal/sq yd

Phase II

From center line runway out 50 ft 0.055 gal/sq yd All other areas 0.066 gal/sq yd

Phase III

From center line runway out 50 ft 0.058 gal/sq yd All other areas 0.074 gal/sq yd

Pickett – Lajes Field, Azores [1983]

Sample Number	Station From South End R/W & C	100 g, 0.1 n		Absolute Viscosity 140°F (60°C) 300.0 mm Hq Vacuum, Poises	
		Untreated	Treated	Untreated	Treated
1	2+43, 83.7 ft W	11.00	20.00	401, 351	65, 420
	23 + 55, 134.9 ft W	11.00	23.00	449, 520	62, 011
	34+34, 5.1 ft E	13.00	31.00	242, 293	32, 860
4	52+07, 51.3 ft W	9.00	27.00	1, 852, 362	43, 497
	64+36, 32.4 ft E	4.00	17.00	2, 774, 367	177, 941
6	80+67, 14.6 ft W	9.00	22.00	863, 971	62, 736
7	86+86, 121.4 ft E	6.00	34.00	1, 263, 880	23, 444
8	99+17, 17 ft E	6.00	29.00	1, 318, 687	41, 392
Average		8.63	25.38	1, 145, 804	63,663
Change (%)		Penetration	194.00	Viscosity	94.40
			Increase		Decrease

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Thank You...

Questions?

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE