

Arizona Department of Transportation

Bill Hurguy P.E. Mafiz Mian P.E.

Success & Challenge on long-range plan

ADOT policy makers focused on preservation- preserving integrity of existing system

Success & Challenge on modernization

• We focused on modernization –replacing PMS & pavement testing equipments

e Perfor	rmance	Data	Soda	a Most Re	cent 9	oda His	tory F	Pavemei	nt Histo	ry Tra	affic Dat	a Esa	d's																		
A	. вт	E SF	FX Di	r MP	Crk 2008	Crk 2009	Crk 2010	Crk 2011	Ptch 2008	Ptch 2009	Ptch 2010	Ptch 2011	Flsh 2008	Flsh 2009	Flsh 201	Flsh 2011	Fret 2008	Fret 2009	Fret 2010	Frot 2011	Bide 2008	Bide 2009	Ride 2010	Bide 2011	Rut 2008	But 2009	But 2010	But 2011	MntCs 2008	MntCs 2009	MntCs 2010
1	10	_	E	100	0	1	1		0	0	0		4	3.5	3.5	_					62	68	74		0.3	0.25	0.26		54		
	10		E	102	0	0	0		0	0	D:	- 4 -	4	4	4	1.0	£					61	63		0.33	0.01	0.18		54		
1	10		E	103	0	0	0		0	0	Ы	SI	es	55	4)	ата	Tr	оп		1 IVI	4	52	66		0.15	0.05	0.11		54		
1	10		E	104	0	0	0		0	0	0		4	4	4						64	62	62		0.16	0.18	0.02		54		
1	10	_	E	105	1	1	1		0	0	0		4	4	4						62	73	71		0.23	0.17	0.09		95		
- H	10	-	E	105	4	4	4		0	0	0		4	4	4			-			118	121	133		0.07	0.03	0.04		122		
1	10		E	108																	122	94	128		0.08	0.02	0.06		122		
1	10		E	109	0	0	0		0	0	0		3.5	3.5	3.5						57	62	77		0.13	0.07	0.16		119		
1	10	_	E	110	0	0	0		0	0	0		4	4	4						63	62	69		0.2	0.1	0.13		116		
1	27k (2008 2 2	2rk 2009 :	2010 2	2011	2008 2	09 20	010 20	3.6	3.6	3.6	3					60	65	71		0.1	14 0	0.07 <mark>(</mark>	.08		144	-	2003	-			-
1	irk (1008 i 2	2009	2010	2011	2008 2	0	010 20	3.6	3.6	3.0	3					60	65	71		0.1	14 0	0.07 C	.08		144		2005				
1	irk (008 2 2	irk 2009 :	2010	2011		09 20	10 20	3.6	3.6	3.6	3					60	65	71		0.1	14 0	0.07 C	.08		144		2005				_
1	7rk (008 2 2	irk 1009 1	2010	2011 2	0008 2	009 20	10 20	3.6	3.6	3.6	3					60	65	71		0.1	14 C	0.07 (.08		144		2003				
	7rk (008 2 2	2009 :	2010		008 2:	009 200	10 20	3.6	3.6	3.6	3					60	65	71		0.1	14 C	0.07 (.08		144						
		ink (1009)	2010			2000 2000	110 20	3.6	3.6	3.6	3					60	65	71		0.1	1 4 (J.O7 C	.08		144						

Success & Challenge on modernization

- PMS may be used as decision processing & decision making tool
- PMS may have decision tree like this-

Figure 5.25: Preventive Maintenance DT for Interstate Routes AC Pavements

Figure 5.26: Preventive Maintenance DT for Non-Interstate Routes AC Pavements

Success & Challenge on the ground

- Micro-Surfacing (CQS-1hP, 4% polymer solids), Slurry Seal (QS-P or CQS-P, 2% polymer solid) & Polymer Modified Asphalt Rubber Crack Sealant perform well.
- Continue to work to apply best practice & to control quality for **Chip Seal** (CRS-2P). A bit Challenging.
- We could not find or settle on multi-source polymerized emulsion to use for **fog/flush coat**.
- Friction course performs well. But we need to do maintenance more than we would like.

Any Question ?

Washington State DOT

Pavement Preservation Update

David Luhr

Pavement Management Engineer

WSDOT Materials Laboratory

WSDOT Perspective on Preservation

- Desire to have <u>well-integrated</u> management of maintenance and capital programs
- Have implemented some data sharing between
 maintenance and pavement management systems
- Have implemented "cross-over" capital funding of some maintenance activities

Evaluation of Total Annual Cost

- Historical Cost of Pavement Service
 - Equivalent Uniform Annual Cost (EUAC) (\$ / lane-mile year spent)
- <u>Expected</u> Cost of Future Pavement Rehab
 EUAC (\$ / lane-mile year gained)

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Preservation Funding

Maint. Budget	 Preventive: repair early distress, prevent rapid deterioration Reduce Emergent Needs: reduce failures expected in next 2 years Emergent Needs: failures requiring immediate remedy
??	 Hold for Rehab: keep section together for expected rehab project
Capital Budget	 Push Rehab Out: fix small segments to push rehab out 2-4 years Rehab: planned rehab project Reconstruct: planned reconstruction project

.....

Washington State Department of Transportation

New Research Project

- Determining Expected Life and Best Practices for Pavement Maintenance Treatments
 - First year of multi-year effort
 - Developing experimental design for maintenance test sections

UDOT's Pavement Preservation Direction

Rocky Mountain West Pavement Preservation Partnership August 27, 2012

> Presented by: Lloyd Neeley Dave Holmgren

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

UDOT Facts

- 1,750 total employees
 - 700 Trans Tech employees
- 5,860 miles of road
- 16,520 lane miles
- 24,700 surface areas
- Central Office
- 8 Districts within 4 Regions
- 4 Region PMEs
- 85 maintenance stations statewide

Maintenance Budget FY-2013 \$106,284,400

State Forces Pavement Maintenance Budget FY-2013

Reactive Activities Preventive Activities Concrete

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

Total Preventive Maintenance Budget FY-2013

Federal Aid Funds (~\$36.9 M)

2012 NATIONAL PAVEMENT PRESERVATION CONFERENCE ROAD TRIP: DRIVING THE MESSAGE FOR CHANGE

UDOT's Tiered Pavement Funding Strategy

- Interstate
 - Goal: Ride Index of Fair or better on 100% of Roadway Sections
 - Eligible for Preventive and Rehabilitative Funding
- Level 1 (AADT > 2000 and/or AADTT > 500)
 - Goal: Ride Index of Fair or better on 100% of Roadway Sections
 - Eligible for Preventive and Rehabilitative Funding
- Level 2 (AADT < 2000 and AADTT < 500)
 - Goal: There isn't one!
 - NOT Eligible for Preventive and Rehabilitative Funding
 - Scheduled to receive a Chip Seal Coat every 10 years

Roadway Categories

Interstate (green)

Regardless of AADT Miles ~ 935, 16% Lane Miles ~ 27% VMT ~ 53% Combo Truck VMT ~ 63%

Level 1 (red)

AADT > 2,000 and/or AADTT > 500 Miles ~ 2,150, 37% Lane Miles ~ 43% VMT ~ 43% Combo Truck VMT ~ 32%

Level 2 (orange)

AADT < 2,000	
Miles ~ 2,750, 47%	
Lane Miles ~ 36%	
VMT ~ 4%	
Combo Truck VMT ~ !	5%

Preservation Treatments

- Chip Seal
 - Low Volume Roads. Has been used on high volume roads with few turning movements.
- Microseal
 - High Volume Urban Roads.
- Bonded Wearing Course (Novachip)
 - High Volume Roads. Adds structure. Has been used on top of concrete.
- Stone Matrix Asphalt (SMA)
 - High Truck Volume Roads. Adds structure. Helps prevent rutting.
- Open Graded Seal Coat (OGSC)
 - High Volume roads. Adds structure. Not used as much due to problems with ravelling.