Northeast Bridge Preservation Partnership Meeting

September 18, 2012 – Newport, RI

- Module 1 TSP²
- Module 2 Pvmt and Bridge Preservation
- Module 3 Bridge Preservation Research

By: Colin Franco, P.E. RIDOT

AASHTO TSP-2 History & Update

Northeast Bridge Preservation Partnership Meeting September 18, 2012

> Colin Franco, PE, Rhode Island DOT TSP-2 Oversight Panel Member

Transportation System Preservation Technical Services Program

TSP-2 Background & History

- Approved by the AASHTO Board of Directors on May 8, 2005 (PR-10-05)
- Created to support the research, technical, and program needs of the member States in their development of Transportation System Preservation programs
- Implemented through the National Center for Pavement Preservation at Michigan State University

TSP-2 Oversight Panel

John Barton, Texas DOT – Panel Chair **Jennifer Brandenburg**, North Carolina DOT – Panel Vice-Chair **Gregg Freeby**, Texas DOT – Panel Vice-Chair (Bridge) **Peter Weykamp**, New York State DOT (Bridge) Eric Pitts, Georgia DOT Nancy Albright, Kentucky TC Lloyd Neeley, Utah DOT Bruce Johnson, Oregon DOT (Bridge) Judith Corley-Lay, North Carolina DOT Colin Franco, Rhode Island DOT **Barton Newton**, California DOT (Bridge) **Erle Potter**, Virginia DOT (Equipment) Butch Wlaschin, FHWA Liaison

Transportation System Preservation Technical Services Program

Regional Bridge Preservation Partnerships

Transportation System Preservation Technical Services Program

Regional Pavement Preservation Partnerships

14 state DOTs

Current Chair

Don Whisler, Kansas DOT

11 state DOTs

Current Chair

Pete Weykamp, New York State DOT

13 state DOTs

Current Chair

Chris Keegan, Washington State DOT

12 state DOTs & Puerto Rico

Current Chair

Danny Tullier, Louisiana DOTD

TSP-2 Support

- Program for Bridge & Pavement Preservation
- Financially supported by over 75 % of AASHTO member agencies
- Over 90% of AASHTO member agencies participate in regional partnerships

Transportation System Preservation Technical Services Program

TSP-2 Involvement

More awareness by local highway agencies and associations

- Local APWA Chapters
- NACE

Building university memberships throughout the country

Transportation System Preservation Technical Services Program

TSP-2 Involvement

Increasing participation from industry associations

- ACPA
- AEMA
- ARRA
- ARTBA-BPA
- FP2 Inc
- IGGA
- ISSA
 - NAPA

TSP-2 Media Campaign Campaign Resource Toolkit

- Spokesperson Training Guide
- Spokesperson talking points
- Media fact sheet
- News release template
- Opinion column template
- Letter to editor template
- Article for trade publications
- Campaign brochure
- PowerPoint presentation
 - Campaign video

Transportation System Preservation Technical Services Program

TSP-2 Media Campaign Campaign Resource Toolkit

- Member access NCPP website: <u>www.pavementpreservation.org</u>
- Member access TSP•2 website: <u>www.tsp2.org</u>
- Media access Coalition website: <u>www.preserveourroads.com</u>

Transportation System Preservation Technical Services Program

TSP-2 Media Campaign Coalition to Preserve America's Roads

A Coalition creates a "chorus of voices" for pavement preservation

Recruiting organizations as coalition members must see:

- 1. Merit of Issue
- 2. Need to preserve our infrastructure
- **3. Benefit for the American Public**

TSP-2 Media Campaign

Is a Campaign Resource Toolkit Needed for Bridge Preservation ?

Transportation System Preservation Technical Services Program

www.tsp2.org

Welcome

The American American of Inter-Highway Transportation (Official SynAdri 10) is an accurrent to the presentation and mathematics of instances security in May 2020. But hallows: Contact to Revenuent Trearrainer, SCIW) van sprittelsen is develop and administer its teer. Pranapertation Bystem Preservation Teaming behaviors Program (FSP-2). The program and instance as an efficient means to description montation to AAG(15) memory approach for press and free highway intraction total excluding built passements and stratiges. As presided ensures within to server as a characterization with corportensive and up-to-date internation on efficient and effective preservation measures that estimate ingthing performance and ordered useful life

National Britige Menagement, Inspection and Preservation Conference, November 2211, St. Louis, Missouri

The Yoste of the Considerant's "Managery the follows dirigging doesn't first fairs". The confidences will include meetings within faiblens and western landpa Preservation Partnerships and the backend thirdge trapection and illumineasive interiorg Group. For tather, information, see the Salas for Salas Formation

T1P*2 Eligible for 3P18 Funding

Cath See it had be furning when

Bridge Preservation - Working Definition (Final Version) Postad

Estimate conversion the V-rank BPETG's Occurre 2 of the forest events to the provided software provided interaction to categorizations on Designation (Andrews).

2019 In-Place Recycling Conference Videos

The volume for the 20 rs in Place flat young Conference are included toos. The 2004 values can be verying

6.21

Exprisin Un **Address** Real Distance and all Hours at Operation States Difford and 29417 ANR: 71000 8 mm. 5 pm Charrow, Mr. Annola Ame: 10175-418-0201 Earlyne Dandard Time

Nacient Marks · Western Protogrammer available

Depth

Newschiffler April 2011 Development of Performance Proprietario de Talence - Managana Laboratory block on Controlly

- · Performance monitoring of Machael Bude-Cavi piek
- Parameter 2010 Cale Cale
- · Petra, Sal Tare Math 211

· Pater inam Merchingel 2214

Upcoming Events

 Figure and Prevention Light Text Group (1991) 753, Galetoond City Chickense Date the W 2811 · Autoriticative Saving Manager, 11

- Wagnes, Marynold 2544 Mar 10 2811 · Southeast Parmented Pro-
- Partnerskip 2011 Hawking Childreng CAL Onishanus
- Orie No. 18 3811 1000 Makhor Contentuing Be white of Neural Ch. A Process and Secondar Some NOT Procedure

and Cele Station 1544 No. 10 2217

EVENTS

FORUMS

Transportation System Preservation **Technical Services Program**

ABOUT TSP2

NEWS

PAVEMENT

PARTNERSHIPS

BRIDGE

PARTNERSHIPS

LIBRARY

Scholarship

James B. Sorenson Memorial Pavement Preservation Scholarship

James B. Sorenson Memorial Pavement Preservation Scholarship

- Recipient shall be a U.S. Citizen or permanent resident.
- Has senior standing and accepted into the pavement engineering graduate program at MSU.
- Has strong academic history

Scholarship Requirements

- Recipient shall be a U.S. Citizen or permanent resident.
- Has senior standing and accepted into the pavement engineering graduate program at MSU.
- Has strong academic history

Scholarship Recipients

Alex Russeau

Michael Krcmarik

NCPP Staff

Larry Galehouse Director

Patte Hahn Administrative Manager

John O'Doherty Project Specialist -Road

Angela Jernstadt Accounts Manager

Dennis Tang IT Specialist

Research

Specialist

Darlene Lane Travel Coordinator

Doyt Bolling Local Programming

Ed Welch Project Specialist -Bridge

Dick Baron Equipment Management Specialist John Hooks Bridge Preservation Specialist

Aaron

Algrim

Production

Specialist

Ebony Houston Student Assistant Samantha Hahn Student Assistant

Questions ?

Enjoy your Day!

End of Module 1

The RIDOT Journey into Pavement Preservation

Formation of the Highway Assessment Committee (HAC) — 1995

- HAC: Incorporate members from various engineering divisions in RIDOT
- Study Focus: Five year old roads
- Purpose: Determine the impact of design and construction practice on highway maintenance
 - Minimize need for maintenance
 - Identify practices that improve highway durability

Highway Assessment Committee -

- Study Focus: Ten year old roads
- Updated databases
- Researched use of Geographical Information Systems (GIS)
- Researched use of Pavement. Management Systems (PMS)

Pavement Preservation Program (P³) — 1998

- Program initiation with statewide crack seal contracts
- Created extensive databases on highway/highway conditions
- Effected Integrated Geographical Information System with database
 - For selection of roads for P³
 - For monitoring of P³
- 4 contracts (Total Funds: \$460K)

Program History

Pavement Preservation Tools/Treatments

- 1998 Crack Seal
- 1999 Microsurfacing and 20% Rubber Asphalt Chip Seal (RACS)
- 2000 Nova Chip, Stress Absorbing Membrane Interlayer (SAMI)
- 2001 Polymer/Crumb Rubber Modified Asphalt Thin Overlay

Decision Matrix

Factors	MICROSURFACING	RUBBERIZED ASPHALT CHIP SEAL	NOVACHIP	ELASTOMERIC THIN OVERLAY
Age of Road	7 (+) Years	7 (+) Years	7 (+) Years	7 (+) Years
Road Type	C2,C3	C2,C4	C2,C3	C2,C3
Traffic Volume	High Car / Low Truck	High Car / (Medium/High) Truck	High Car / High Truck	High Car / High Truck
Pavement Structure	>5 inches	>5 inches	>5 inches	>5 inches
Land Use	All Types	Non Residential, Rural, Farm, Non City, Industrial	City, Urban Upscale	City, Urban Upscale
Pedestrian / Children	OK to use	Do not use	OK to use	OK to use
Road Features				
Curbing	ОК	ОК	OK	ОК
Sidewalk	ОК	ОК	OK	ОК
Distress Factors				
rutting > 3/4in.	OK with shim course	OK with shim course	OK with shim course	OK with shim course
utility trenches	OK with shim course	OK with shim course	OK with shim course or patching	OK with shim course or patching
crack density	Light	Medium/Heavy	Light/Medium	Light/Medium
base failure alligator cracks	Νο	yes with shim course	yes with shim course	yes with shim course
pothole / raveling	Νο	Yes with patching	Yes with patching	Yes with patching
Location	City, Urban, Suburban, non commercial	Suburban, Rural, Commercial, Industrial	City, Urban	City, Urban
Restrictions				
Thetmoplastic striping	No (must be removed)	No (must be removed)	Yes	Yes
Rigid Base	No	Yes	Νο	No
Intersections	Yes	No	Yes	Yes

Deterioration Curve w/ Strategies & Costs

1998-2011 Crack Seal

1700 LaneMiles27 MillionLinear Feet

SURFACE SEALS 1999-2011

1999-2011 Surface Seals

624 Lane Miles

Pavement Preservation Technology For Bridges

Rubberized Asphalt Chip Seal (RACS) — Description

The RACS is a blend of 20% crumb rubber and asphalt. RACS is hot spray-applied at the rate of 0.6 gallons per square yard. Then covered with 3/8" or 1/2" precoated stone, followed by rolling.

- Flexible Good for moderately cracked roads.
- Relatively easy/fast to apply
- Ideal for cold wet climates
- Other unique applications
20% Rubber Asphalt Chip Seal Material Composition

- PG 58 28
- Crumb Rubber Max size #10 sieve
- Rubber % 20 ± 3
- Aggregate Size 3/8" to ½" (single size)
- 100% Aggregate coating w/PG 58 22

RACS Process Spray Application

Rubberized Asphalt Chip Seal — Chip Spreader

Rolling

Sweeper

Example Bridge Application of RACS — Mount Hope Patches

Rubberized Asphalt Chip Seal — Mount Hope Bridge Finished

Rubberized Asphalt Chip Seal — Barrington Bridge Finished

Paver-Placed Surface Treatment (Nova Chip/PPST) - Description

PPST is a polymer emulsion (applied at 0.25 gallons per square yard) sprayed immediately before placement of the hot mix overlay (5/8").

- Efficient/fast operation
- Used on roads with sound foundation
- Good ride and aesthetically pleasing

Paver-Placed Surface Treatment

— Train

Paver-Placed Surface Treatment — Emulsion and Mix Application

Paver-Placed Surface Treatment — Sakonnet Bridge Placing

Paver-Placed Surface Treatment — Sakonnet Bridge Placing

Paver-Placed Surface Treatment — Sakonnet Bridge Rolling

Paver-Placed Surface Treatment — Sakonnet Bridge Detail

Paver-Placed Surface Treatment — Sakonnet Bridge Finished

Sample Monitoring Section Data

MONITORING SECTION DATA

Element ID	ROAD NAME	ROUTE #	LOCATION	SEASON	DATE	JOINT CRK (FT)	EDGE CRK (FT)	LONG CRK (FT)	TOTAL LONG CRK W/EDGE (FT)	TOTAL LONG CRK W/O EDGE (FT)	TRAN S CRK (FT)	REFL CRK (FT)	TOTAL TRANS CRK (FT)	TOTAL LINEAR CRK W/O EDGE
				SPRING 2001	5/9/2001	5	0	48	53	53	4	0	4	57
SS40xx(02)XX-2N	E	Rt. 1000	Pole 94 – SOUTHERN LIMIT	FALL 2001	9/24/2001	5	0	50	55	55	4	0	4	59
				SPRING 2002	5/21/2002	5	4	64	73	69	6	0	6	75
				FALL 2002	10/24/2002	5	4	68	77	73	6	0	6	79
				SPRING 2003	4/17/2003	5	4	129	138	134	11	0	11	145
				FALL 2003	11/24/2003	5	4	129	138	134	14	0	14	148
				SPRING 2004	3/9/2004	8	4	172	184	180	17	0	17	207
				FALL 2004	11/9/2004	8	4	150	162	158	15	0	15	173
				SPRING 2005	6/9/2005	8	4	127	172	168	16	0	18	186
				FALL 2005	12/20/2005	8	4	127	172	168	16	0	18	186
				SPRING 2006	5/25/2006	8	4	167	179	179	19	0	21	196
				FALL 2006	12/14/2006	8	4	167	179	175	19	0	21	196
				SPRING 2007	5/31/2007	8	4	173	218	214	20	0	20	234
				FALL 2007	10/15/2007	8	4	173	218	214	20	0	20	234
				TOTAL DISTRESS		8	4	173	218	214	20	0	20	234
			1			1			1			1	1	1
BLOCK	ALLIGATOR CRACKING	RUTTING SHOVING		RAVELING (FT ²)			POTH	OLES	UTILITY PATCHES		AADT	IRI	SKID	
CRACKING (FI-)	(FT ²)		-		(⊢।⁻)	(F1-)	(#)	(FT ²)	(#)	(FT ²)			RESULTS	SIRUCIURE
0	0	0	0	0	0	0	0	0	0	0				0.5" SURFACE
0	0	0	0	0	0	0	0	0	0	0				TREATMENT
0	0	0	0	0	0	0	0	0	0	0				2" CLASS I-1
0	0	0	0	0	0	0	0	0	0	0				5 1/4"
0	0	0	0	0	0	0	0	0	0	0				BINDER/BASE
0	0	0	0	0	0	0	0	0	0	0				12" GRAVEL
0	0	0	0	0	0	8	0	0	0	0				BORROW
24	0	0	0	0	0	8	0	0	0	0				
67	0	0	0	0	0	8	0	0	0	0				
67	0	0	0	0	20	8	0	0	0	0				
67	0	0	0	0	20	8	0	0	0	0	2000		52.4	
67	4	0	0	0	27	20	0	0	1	20		ļ		
67	16	0	0	0	35	20	0	0	1	20				
67	16	0	0	0	35	20	1	8	1	20				
			-	-										
67	16	0	0	0	35	20	1	8	1	20				

Section Crack Map

MONITORING TYPE - YEAR PLACED - 2000 ROAD - LIMITS -TOWN - JAMESTOWN REVIEW DATE - FALL 2004 SECTION ID -

Monitoring Sections PPEST

RI-1A (Kingstown Rd) SS3080(02)TO-1: Crack Density vs. Time

Monitoring Sections SAMI

RI-123 SAMI-E: Crack Density vs. Time

RI-98 SAMI-N: Crack Density vs. Time

Monitoring Sections RACS

RI-126 (Old River Rd.) RCS1170-1: Crack Density vs. Time

RI-126 (Old River Rd.) RCS1170-2: Crack Density vs. Time

Module 3: RIDOT Research in Bridge Preservation

2012 Northeast Bridge Preservation Partnership Meeting Newport, Rhode Island September 18, 2012

RESEARCH

RIDOT Research

 RIDOT's research is geared towards projects whose results can be implemented into our program. That includes technologies than can extend the life of our existing structures.

Fatigue Fuse (#2219)

- One of RIDOT's earliest research projects
- The work investigated the use of a fuse that could indicate the fatigue level of a steel beam
- Although the results were inconclusive, it was an attempt to understand the mechanisms of bridge deterioration.

UNBONDED LENGTH = .3"

Typical Fatigue Fuse (to be mounted on beam flange)

RESEARCH

Elimination of Expansion Joints (#2228)

- Leaking of joints is a major cause of deterioration of substructure elements
- The project looked at several means of constructing decks without joints
- Limits of applicability for the techniques was also evaluated
- RIDOT uses this technique or moves the joint away from substructure elements when possible

Evaluation of Corrosion Inhibitors (#2241)

- An attempt to develop a quantifiable measure of the protection provided by corrosion inhibitors for reinforcing
- ASTM G109 was used as a laboratory test, to compare different products
- RIDOT uses corrosion inhibitors

RESEARCH

Composite Pier Cap Project

- An Innovative Bridge Research Concept (IBRC) project
- Investigated using fiber-reinforced polymers (FRP) as a protection system for concrete from chlorides, rather than the focus on structural reinforcement
- A structure was chosen that was already slated for rehabilitation, to assess how well the FRP could arrest further deterioration; no repairs were made to the joint over the pier caps

Composite Pier Cap Project (cont.)

- The bridge was visually inspected for the next four years and tested for chloride content
- The piers remained stable; the bridge recently began to undergo a rehabilitation project
- It was decided to use FRP to wrap the columns after they were repaired, only for protection
- RIDOT will use FRPs in the future, both for structural repairs and as protection

Composite Pier Cap Project Application

Composite Pier Cap Project @ Four Years

Durability of FRP/Concrete Joints (#2245)

- A concern was raised on the lifespan of un-reinforced adhesives used to bond carbon fiber FRPs to the underside of bridge beams
- Because carbon fiber is electrically conductive and would be placed in a electrochemically active environment, this reaction could potentially cause premature failure of the system
- Tests have been conducted for fatigue and electrochemical reactions on the bond strength
- RIDOT has used FRPs for flexural strengthening of beams

RESEARCH

Evaluation of Stainless Steel Rebar (#2250)

- Stainless steel is corrosion resistant due to the passive film of chromium oxide that forms on its surface
 - Crevice corrosion occurs when the film is consistently worn away when the metal is in contact with another surface
- This project looked at the potential for crevice corrosion of SS rebar as a reinforced concrete element moves
- Results indicated that crevice corrosion was not an issue
 RIDOT used SS rebar on the new Sakonnet River Bridge in extreme exposure areas

RESEARCH

Lightweight Pneumatically-Applied Mortar (#2272)

- A previous study looked at cenospheres (hollow microballoons produced during the coal burning process) as a lightweight aggregate for concrete
- This project looked at modifying shotcrete to create material that would lessen deadload and reduce rebound

Self-Healing Concrete (#2296)

- This project looked at creating concrete that could heal itself beyond the fine cracks that self-seal with normal hydration products
- Tiny capsules containing repair chemicals are introduced into the mix, which are designed to fracture when the concrete cracks
- The chemical contents react and fill the crack; initial results indicate an improvement in strength, as well as sealing the crack

RESEARCH

Questions

End of Module 3

RESEARCH

