Cold In-Place Recycling in Virginia

Southeastern States In-Place Recycling Conference
August 31, 2011
Brian Diefenderfer, Ph.D., P.E.
Acknowledgements

• Conference sponsors

• Industry
 – Dunn Co.
 – E.J. Breneman
 – Slurry Pavers (Virginia)
 – Lanford Brothers (Virginia)
 – Wirtgen America
 – RoadScience
 – Parsons
 – ARRA

• VDOT
 – Richmond and Staunton Districts
 – Materials Division
 – Public Affairs
 – Research

• Other Agencies
 – Delaware, Maryland, Nevada, Ontario, Pennsylvania, South Carolina
VDOT Project Selection Criteria

• Developing usage guidelines
 – Deterioration type
 – Existing pavement thickness
 – Maintenance history

• Informal criteria
 – Ability to address distress that would be more difficult by traditional processes
 • Allowable work hours
 • Traffic control
 • Location of deterioration within pavement section
CIR Pavement Design

• Not yet standardized by VDOT

• AASHTO
 – layer coefficient around 0.30

• Mechanistic (catalog in progress)
 – Resilient Modulus
 – Flow Number
 – Dynamic Modulus
Cost Effectiveness

• Not yet quantified by VDOT

• What is the recycling process compared to?
 – What normally would be done
 • Mill and overlay up to 4 inches
 – What should be done
 • In some cases, we need to go deeper

• Literature shows up to 45% cost savings
Challenges with Decision Makers

• Experience & familiarity
 – We are relying on the experience of others
 • Is their knowledge “transferable”?

• How do we move forward?
 – Point out potential for cost and time savings
 – Show ability to address causes, not just symptoms
 – Research to characterize performance
VDOT CIR Projects

• 2011
 – US Route 60
 – State Route 35
 – Interstate 81

• 2012
 – US Route 17
VDOT CIR Projects, US Route 60

• 3.7 lane miles
 – 3 lanes at 1.24 miles each
• 3-5 inch depth
• Asphalt emulsion (2.5-3.0%)
• 3.5 inch asphalt overlay
 – 2 inch intermediate, 1.5 inch surface
• AADT = 9,000 (7% trucks)
• 3 days to complete CIR work
VDOT CIR Projects, State Route 35

- 4.7 lane miles
 - 2 lanes at < 2.4 miles each
- 3-5 inch depth
- Asphalt emulsion (3.5%)
- 4.0 inch asphalt overlay
 - 2 inch surface, 2 inch intermediate
 - Scratch course placed prior to overlay
- AADT = 2,400 (20% trucks)
- 6 days to complete CIR work
VDOT CIR Projects, I-81

- CIR + CCPR + FDR
- 7.2 lane miles (2 lanes at 3.6 miles each)
- Foamed asphalt, portland cement, calciment
- AADT = 21,000 (28% trucks)
- Right lane
 - 4 closures periods, 17 days
 - 12 inches FDR, 6 inches CCPR, and 6 inches AC
- Left lane
 - 1 closure, 3 days
 - 5 inches CIR and 4 inches AC
Original structure = 12 inches AC over 10-12 inches aggregate base
20 to 30 ft per minute
Why recycle?

• Economic
 – Nevada DOT saved $600 million over 20 years
 – Other studies show a 30 to 50% cost savings per project

• Environment
 – MTO (Ontario) estimated that the process emits 50% less greenhouse gases

• Construction
 – Address distress causes rather than symptoms
VDOT Pavement Recycling Summary

• Research
 – Characterize stress/strain behavior
 • MEPDG inputs
 – Laboratory prepared samples
 • Influence of different curing procedures & stabilizing agents

• Implementation
 – Develop specs and standard test methods
 – Develop usage guidelines
Where are we headed?

- Go forth and recycle (where appropriate)
 - Specs
 - Usage guidelines
 - Materials characterization catalog

- 2012
 - US Route 17, Isle of Wight County
 - 19.5 lane miles
 - 4 lanes at 4.8 miles each
 - Urban arterial (AADT = 29,000 w/ 2% trucks)
 - Numerous crossovers and stoplights