

"Structural and Functional Characteristics of Decommissioned Bridges"

John M. Hooks, PE J. M. Hooks and Associates November 2011

- To examine the the life span of bridges vs. material/design type, traffic volumes, etc.
- To quantify the age, condition, and functional status of bridges at the time they were replaced
- To develop insight into the reasons that bridges are replaced and the expected service life of structures of various material/design types
- To provide knowledge for engineers involved with bridge preservation policy, bridge management, and life cycle cost analysis of bridges.

Questions About Decommissioned Bridges

- Where?
- Owned/maintained by?
- Type, material, size?
- Age when replaced?
- Functional class of highway?
- Why were they replaced?
 - What was their condition when they were replaced?
 - Were they structurally deficient or functionally obsolete?

Studying a Population of Decommissioned Bridges

- Identify a significant number of bridges that have been taken out of service (and probably replaced)
- Determine what year they were decommissioned, and
- Having completed steps (1) and (2), historical data from the NBI can be used
 - To answer the other aspects of the "what" question
 - To provide clues that help answer the "why" question

This Study

- Resources:
 - Historical NBI data available for Years 1984 to 2009
 - Bridge Portal interface with LTBP database
- Study focus:
 - 1992 to 2009
 - Identified 20645 bridges in 42 states that were replaced during that time span
 - Culverts excluded

Reliance on NBI data should be tempered with understanding that some NBI data may be in error. For instance:

- Found a NJ DOT owned bridge located in Angola
- Age data obtained from the NBI can be problematic
 - Results included some bridges that were replaced before they were originally built
 - In one case 288 years earlier; in two others over 1000 years earlier
- Therefore, I eliminated some bridges with obvious age errors, but really don't know the extent of any other

Replaced Bridges by State

State	# Replaced						
AL	74	IL	2	NV	35	TN	1443
AK	4	IN	2258	NH	137	ТХ	2487
AZ	317	IA	86	NJ	555	UT	32
AR	45	KS	1732	NM	1	VT	184
СТ	164	LA	1324	NY	2459	VA	80
DE	44	ME	245	ND	218	WA	36
DC	2	MD	323	ОН	21	WV	351
FL	4	MI	1176	OR	37	WI	24
GA	118	MS	392	PA	1106		
HI	20	MT	414	RI	33		
ID	1	NE	1764	SD	471		

Long-Term Bridge Performance Program

Bridges Replaced

Owner

Replaced

Type of Main Span

Type of Main Span

Main Span Material

Structure Type/Material vs. Median

Age Median Age

Structure Type/Material vs. Median Age

Median age

Structure Type/Material vs. Median Age Median Age 78.5 78 77.5 77 Median Age 76.5 76 75.5 75 Steel Truss - Deck Steel Truss - Through **Concrete Arch - Deck** Long-Term Bridge Performance Program

Urban vs. Rural Bridges Replaced

Rural Bridges Replaced

Urban Bridges Replaced

Long-Term Bridge Performance Program

Age by Material Type

Material	Range	Mean	Median
Concrete	8 - 110	61.1	64
Steel	8 - 110	62.8	64
P/S Concrete	8 - 80	39.3	37

ADT

Median Age vs ADT

Median Age vs ADT

Conclusions

- Sample Population 20,222 bridges (no culverts)
- 86 % Rural
- Rural bridges 56% local & 22% minor
- Urban bridges 14% Interstate, 22% Principal Arterial
- Ownership 26% State, 64% County
- ADT
 - 62% < 500
 - 25% 501 1000
 - .01 % > 50,000

Conclusions

- Main Span Type
 - Girder/Girder-Floorbeam
 - Thru truss
 - Slabs, tee beams
- Main Span Material
 - Simple span steel beam bridges >50%
- Age when replaced fairly normal distribution
- Age when replaced vs. traffic volumes direct correlation not evident

Inventory Rating (Metric Tons)

Replaced

Sufficiency Rating

Structural Deficiency

- **Structurally Deficient (SD)** A highway bridge is classified as structurally deficient if one of the following is rated in "poor" condition or worse (4, 3, 2, 1, or 0 on the NBI rating scale
 - Item 58 Deck,
 - Item 59 Superstructure,
 - Item 60 Substructure or
 - Item 62 Culvert
- Or,
 - Item 67 Structural Evaluation Appraisal is coded 2, 1, or 0)
 - Item 71 Waterway adequacy for the feature below the bridge is coded 2 or below

Functional Obsolescence

- Functionally Obsolete (FO) Highway bridges classified as functionally obsolete are NOT structurally deficient; classification as Functional Obsolete would be triggered by a code of 3 or lower, meaning basically intolerable and requiring high priority for correction, for
 - Item 68 Deck Geometry Appraisal,
 - Item 69 Underclearances Vertical & Horizontal, or
 - Item 72 Approach Roadway Appraisal;
- <u>Or if</u>
 - Item 67 Structural Evaluation Appraisal or
 - Item 71 Waterway Adequacy Appraisal are coded 3.

Deficient Bridges

Structural Deficiencies

Reasons for Rating of SD

SD

Reasons for Rating of SD by Material

Functionally Obsolete Characteristics

QUESTIONS?

