Project Prioritization Using Multi-Objective Utility Functions

Michael B. Johnson California Department of Transportation

National Bridge Management, Inspection and Preservation Conference November 2011

Bridge Preservation Needs

Least Cost Optimization

Least Cost Optimization Results

BMS Modeling Using Utility Functions

- A utility is a 0 to 1 unit less measure that can quantify action or project benefits.
- Dissimilar benefits can be combined using utility functions.
- Value Functions are user defined and can include.
 - Condition, load capacity, risks, functional needs, etc.
- The total utility of a project is equal to the weighted sum of the component utilities (value functions).

Total Utility = $W_1(U_1) + W_2(U_2) + W_3(U_3)...$

Sample Utility Function Value Curve

Example Calculation

Bridge ID	Health (BHI)	Scour 113	Load Rate	Bridge Area
Bridge A	80	7	15 tons	1000 sq m
Bridge B	80	3	40 tons	2000 sq m
Bridge C	50	5	40 tons	3000 sq m

Bridge Health Index Utility Curve

Health Index Utility Curve

Example Calculation - Condition Component

Bridge ID	Health (BHI)	U _{BHI}
Bridge A	80	0.50
Bridge B	80	0.50
Bridge C	50	0.075

NBI Scour Utility Curve

NBI Scour Utility Curve

Example Calculation – Scour Component

Bridge ID	Scour 113	U ₁₁₃
Bridge A	7	1.0
Bridge B	3	0.5
Bridge C	5	0.95

Load Capacity Utility Curve

Load Rating Utility Curve

Example Calculation – Load Component

Bridge ID	Load Rate	U _{LR}
Bridge A	15 tons	0.5
Bridge B	40 tons	0.95
Bridge C	40 tons	0.95

Example Calculation

Bridge	BHI	U _{BHI}	Scour	U ₁₁₃	Load	U _{LR}	W_{BHI}	W _{SC}	W _{LR}
Bridge A	80	0.50	7	1.0	15	0.50	0.50	0.30	0.20
Bridge B	80	0.50	3	0.50	40	0.95	0.50	0.30	0.20
Bridge C	50	0.075	5	0.95	40	0.95	0.50	0.30	0.20

Bridge A $U_T = (1-0.50)*0.5+(1-1)*0.3+(1-0.5)*0.2=0.35$

Bridge B $U_T = (1-0.50)*0.5+(1-0.5)*0.3+(1-0.95)*0.2=0.41$

Bridge C $U_T = (1-0.075)*0.5+(1-0.95)*0.3+(1-0.95)*0.2=0.95$

Project Size and Cost Introduced

Bridge ID	Total Utility	Project \$	Bridge Area	\$/Sq M
Bridge A	.35	1.2 mil	1000 sq m	0.0012
Bridge B	.41	2.5 mil	2000 sq m	0.0013
Bridge C	.95	9.0 mil	3000 sq m	0.003

Bridge A Project Priority = 0.35/0.0012 = 291Bridge B Project Priority = 0.41/0.0013 = 320Bridge C Project Priority = 0.95/.003 = 316

Summary

- Utilities can combine all project level attributes, including risks, into a single value that can be used to prioritize projects.
- Caltrans showed a strong correlation to the engineering judgment process currently used.
- The multi-objective optimization techniques are easy to understand and computations are fairly simple.
- The multi-objective utility techniques are being incorporated into Pontis and are well suited for asset management applications too.