

Count of Bridges:

State - 7, 863

Local - 11,898

Sq Ft of Deck

State - \$83.8M

Local - \$94.6M

DESIGN

CONDITION ASSESSMENT

- Visual
- Sounding
- GroundPenetrating Radar
- Thermographic Inspection

- Structural Deck Preservation
- Maintain Structural Deck Rating
- Minimize Deck Replacement Projects
- Extend Service Life of Existing Decks
- Maintain Mobility

TODAY'S SITUATION

DECK DATA

BDMS	Rated 5	Rated 4	
Number BINs	4,819	1,957	
Square Footage	19.5M	6.9M	

BRIDGE MAINTENANGE GREDO

We, the bridge maintenance engineers of New York hold these truths to be selfevident: alkjoints leak, all congrete cracks and rust never sleeps. We will strive to capitalize our way out of maintenance and maintain our way out of capital. It is our endeavor to educate others that a bridge is as important to a highway as a diamond is to a ring.

- Minimal Bond
- Cold Joint
 - Not waterproof
- Temporary Fix
 - All material
 - All techniques
- Future Problems

OPTIONS

OPTIONS

"Healer/Sealer"

- Ultra-low Viscosity Polymers
- Gravity Feed
- No Aggregates
- Sacrificial W S

WATERPROOFING MEMBRANES

- If They Work:
 - Block Salts from Bare Reinforcing Bars to Prevent
 - Expanding steel volume
 - Concrete pops
 - Concrete cracks
 - Accelerated corrosion
- If They Leak:
 - Trap Salts Near Bare Reinforcing Bars to Promote
 - Expanding steel volume
 - Concrete pops
 - Concrete cracks
 - Accelerated corrosion

CONDITION STATE				POTENTIAL RESULT TO NBI		0.00		
Deck Surface NBI #58a	Deck Surface Deficiencies % (a)	Deck NBI #58	Deck Underside Deficiencies % (b)	REPAIR OPTIONS	Item # 58a Deck Surface Rating	Item # 58 Deck Rating	NEXT ANTICIPATED EVALUATION	
N/A	N/A	N/A	N/A	CSM Activities	No Change (d)	No Change (d)	1 to 8 years	
NBI = 5, 8, 7	2% to 5%	NBI > 5	N/A	Deck Patch / Seal Cracks	Up by 1 pt.	No Change (d)	3 to 10 years	
				Epoxy Overlay	NBI now 8, 9	No Change	10 to 15 years	
		NBI <u>≤</u> 5	N/A	Deck Patch	Up by 1 pt.	No Change	3 to 10 years	
			N/A	Hold	No Change	No Change	1 to 8 years	
NBI = 5	5% to 15%	N/A		Hold	No Change	No Change	1 to 8 years	
				Deck Patch	Up by 1 pt.	No Change	3 to 10 years	
NBI = 4 or 5	15% to 30%	NBI = 5,6	<10%	Deep Concrete Overlay	NBI now 8, 9	Up by 1 or 2 pts.	25 to 30 years	
		NBI = 3 or 4	10% to 30%	Shallow Concrete Overlay	NBI now 8, 9	Up by 1 pt	10 to 15 years	
		NBI = 2 or 3	>30%	HMA Overlay with waterproofing membrane(e)	NBI now 8, 9	No Change	8 to 10 years	
NBI= <u><</u> 4	>30%	NBI = > 5	<5 %	Deep Concrete Overlay	NBI now 8, 9	Up by 1 or 2 pts.	20 to 25 years	
		NBI = 3, 4, or 5% to 30%	50/ to 200/	Shallow Concrete Overlay	NBI now 8, 9	Up by 1 pt	10 years	
			HMA Overlay with waterproofing membrane(e)	NBI now 8, 9	No Change	5 to 7 years		
		NBI = 2 or 3 >30%	>3004	Replace Deck	NBI now 9	NBI now 9	40+ years	
			>00.70	HMA Cap (f)	NBI now 8, 9	No Change	1 to 3 years	

POLYMERS IN MAINTENANCE

SHRP Task Force 34

Rapid Cure
Good Bond Strength
Flexural, Tensile Strength
Negligible Perm.
Good Freeze-Thaw
Low Dead Load
High Friction
Resistant to Salts

Bond Critical Costly Labor Intensive

SLURRY

NYSDOT W.S. AGGREGATE

- Gap Graded
- Hard
 - Mohrs >= 7
- Acid Insoluble Residue
 - **>20%**

Sieve Size	#4	#8	#16	#20	#30
Percent Passing	100	30-75	0-5	-	0-1

COMPARISONS

	DP	MEMBRANE	THIN POLY	
"t" (in)	1.6	2	.375	
Wt (lb/ft ²)	20	8	4	
Cost (\$/ft ²)	5	8	4	
Delay (d)	21	2	2	
Service (yr)	20	12	15	

WHAT ELSE

BETTER QUICKER CHEAPER

ASPHALT RUBBER PAVER PLACED SURFACE TREATMENT?

PAVEMENT PLACED SURFACE TREATMENT

Benefits

- Rapid Placement
- Minimal Surface Prep
- Polymer Modified Emulsion Bond Coat
- High Quality Gap Graded Mix
- Less Labor

Unknowns

- Waterproofness
- Performance on Bridge Decks
- Service Life on Bridge Decks

ASPHALT RUBBER

Rubber contains polymers which...

- Raises softening point to above 140° F.
 - Resistance to rutting and shoving
 - Resistance to asphalt migration and drain-down
- Increases low temperature flexibility of residue.
 - Resistance to cracking
- Increases high temperature viscosity
 - Thicker film coatings on aggregate particles
 - Higher asphalt content mixes / applications
 - More asphalt = greater resistance to oxidation
 - Increased long term durability
 - Top PG Grading above 80
- Contains no water.

RUBBERIZED ASHALT PRODUCTS

Asphalt-Rubber Binder

Terminal Blend Binder

ASPHALT COMPARISON

Criteria	AR	ТВ	PG
% Crumb Rubber	15+	NY: 12+/- 3 Others: 5-10	N/A
ASTM	D-6114		AASHTO
cP@375 F	1500-5000	500-	100-
Softening Pt. F	140+	130+	115- Typical
ALF Cycles	300,000+	100,000	100,000

ALF PROJECT TEST RESULTS

HOW IT WORKS

22,937,600
rubber
particles per
ton of mix
helps fight
cracking

www.rubberpavements.org

GREEN TECHNOLOGY

Turning this...

Into this...

MassDOT – AR PPST, I-295, August 2008

NYSDOT Project – D261765

PRE-EXISTING CONDITINS

AR PPST MIX PRODUCTION

AR PPST APPLICATION

AR PPST APPLICATION

WATERPROOFING

- Reduce water intrusion
- Reduce chlorides
- Contaminated
 - Chlorides
 - Moisture
- Will the deterioration rate be reduced?

PROGRAM OBJECTIVES

- Verify the Effectiveness of Various Membranes
 - Various superstructure types
 - Various traffic conditions
 - Various Regional locations
- Determine Areas Most Prone to Failure
- Long-Term Monitoring
 - May be years for complete study: Failures reported immediately
- Correspond to Condition Rating

Conventional Moisture Measurement

- Probing Methods
 - test probes
 - surface
 - drill hole
- RF Field Methods
 - gross assessment
 - surface sensitive

Wireless Sensor

How Long Will They Last?

- No Batteries
- No Moving Parts
- Stainless Steel Contacts
- Sensor Should Outlast the Structure

WHAT IS MEASURED

$$R=rac{
ho L}{A}$$
 $P= ext{resistivity} \ L= ext{length} \ A= ext{cross sectional area}$

Conductivity is ¹/_R

PLACING, LOCATING,& INTERROGATING

HYDRO TRACKER DATA

Rte 32 Oriskany NY									
J Foley		13-Jul-10				13-Sep-11			
Мар	Imbed	Test	Ref	Calc	% H2O	Test	Ref	Calc	% H2O
E Ctrl	E Ctrl	140	1000	0.14	-0.2	143	1000	0.14	-0.1
E1	E1	297	1000	0.30	2.7	309	1000	0.31	3.0
CL1	E2	226	1000	0.23	1.4	215	1000	0.22	1.2
E2	E3	532	1000	0.53	7.1	474	1000	0.47	6.0
CL2	E4	356	1000	0.36	3.8	290	1000	0.29	2.6
E3	E5	339	1000	0.34	3.5	265	1000	0.27	2.1
CL3	E6	357	1000	0.36	3.9	293	1000	0.29	2.7
E4	E7	259	1000	0.26	2.0	226	1000	0.23	1.4
CL4	E8	321	1000	0.32	3.2	263	1000	0.26	2.1
E5	E9	267	1000	0.27	2.2	267	1000	0.27	2.2
CL5	E10	257	618	0.42	4.9	327	1000	0.33	3.3
W Ctrl	W Ctrl	125	1000	0.13	-0.5	124	1000	0.12	-0.5
W5	W5	211	656	0.32	3.2	276	1000	0.28	2.3
W4	W4	149	224	0.67	9.6	140	235	0.60	8.3
W3	W3	262	1000	0.26	2.1	228	1000	0.23	1.5
W2	W2	393	1000	0.39	4.5	349	1000	0.35	3.7
W1	W1	300	1000	0.30	2.8	260	1000	0.26	2.0

HydroTracker Readings Route 32 over CSX BIN 1074460

ANTICIPATED RESULTS

- Various Types of Membranes Evaluated
- Measure Effectiveness of Waterproofing
 - Moisture Sensors
 - GPR Surveys
 - Inspection Ratings
- Mainstream Use of Alternative Systems
 - Develop/Modify Specifications
 - Increase the Overlay Program

Continue with Trials using Innovative Materials

Review Evaluation Criteria

Develop Candidate Selection Guidelines

Develop Design and Material Specs

