

Performance Based In-Place Recycling Specifications

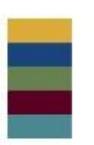
Northeast and Mid-Atlantic States In-Place Recycling Conference August 24-26, 2010 Harrisburg, PA

Requirements for CIPR and FDR

Requirements	CIPR	FDR
Low to Moderate Traffic	X	X
Rural Road Application	X	
Requires Significant Section	X	
Requires Wearing Course	X	X
No underground conflicts		X


Requirements for HIPR

- Best for rural areas due to long recycling train
- Ideal for AADT's between 1,000 and 10,000
- Pavement should not exhibit extensive cracking
- Limited presence of surface treatments
- Limited foliage concerns



States Use of CIPR

Specification / Information Review

- Arizona
- California
- Colorado
- lowa
- Kansas
- Nevada
- New Mexico
- Pennsylvania
- South Dakota

- Utah
- Vermont
- Wisconsin
- Ontario
- FHWA
- ARRA
- PCCAS

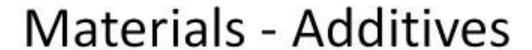
Specification Sections

- Description
- Materials
- Mix Design
- Construction QC/QA
- Equipment
- Climatic Conditions
- Measurement/Payment
- Layer Coefficient

Description

- Partial Depth (Cold In-Place)
- Full Depth (FDR)

Description (General)


- Milling existing asphalt pavement
- Mixing the millings with an emulsion
- Placing
- Compacting

Materials - Binders

State	Asphalt Binder	
Arizona	HFE-XXP	
California	Emulsified RA	
Colorado	HFE (Polymer) / emulsified RA	
Iowa	Contractor select	
Kansas	Emulsified asphalt / asphalt RA	
Nevada	CMS-2S	
New Mexico	HFE-150P	
Pennsylvania	MS, CMS, SS, CSS, HMFS / polymer grades	
South Dakota	Emulsified asphalt	
Utah	Shown on plans	

State	Additive	
Nevada	1.5% quicklime slurry	
New Mexico	1.5% hydrated lime slurry	
Utah	1.5% quicklime slurry	7

State	Method	
Arizona	Contractor performed	
California (Project)	Marshall stability, retained stability, emulsion, cement	
Iowa	Gyratory compactor, Marshall stability, retained stability, raveling test	
Vermont	50 blow Marshall	

QC/QA - Gradation

State		% Pa	% Passing	
State	2-in	1 ½-in	1 1/4-in	1-in
Arizona			100	
California				100
Colorado			100	
Nevada		100		
New Mexico			100	90 - 100
South Dakota			100	95
Utah		100		
Wisconsin	97			

QC/QA - In-Place Density

State	Density Requirement	
Arizona	Specified in plans	
California	95 to 105% of max density on test strip	
Colorado	100% of field mixed/lab compact	
New Mexico	96% of field mixed/lab compact	
South Dakota	97%of target density	
Utah	96% of field mixed/lab compact	

QC/QA – Surface Tolerance / Smoothness

State	Smoothness Requirement
Arizona	1/4-in longitudinal
California	1/4-in transverse
Colorado	3/16-in transverse & 3/16-in longitudinal
Nevada	1/4-in transverse & 1/4-in longitudinal
New Mexico	1/4-in transverse
South Dakota	0.04-ft transverse
Utah	3/8-in transverse

Equipment (Typ.)

- Self propelled machine 12-ft in width
- Capability to crush and screen material
- Capable of processing and spreading material in one pass
- Capable of producing homogeneous material
- One pneumatic roller at least 25-tons
- One double drum roller at least 10-tons
- Rotary broom on site

Climatic Conditions – Do Not Construct

- Ambient air temperature
 - ex. below 45 to 65°F
- Pavement temperature below
 - ex. below 50 to 70°F
- Over night temperature at or below freezing
- Weather is rainy or foggy
- When proper mixing, spreading and compaction cannot be accomplished
- Between specific months
 - ex. October 1 to April 30

Climatic Conditions – Curing Conditions

- No vehicles on material until 2-hrs have passed
- Surface treatment/wearing course placed when moisture content is below a certain point
 - Free moisture content below 1.0 to 1.5%
 - Total moisture content below 1.5 to 3.0%
- Wearing course must be placed within a certain timeframe
 - Between 14- to 30-days

Measurement / Payment

- Payment based on square yard or unit price per station
- Payment may include bituminous materials on a volume or weight basis

Layer Coefficients

State	Layer Coefficient	
California	Gravel Factor – 1.5	
Kansas	0.25 - 0.28	
NCHRP 224	0.35 (0.22 – 0.49)	
Nevada	0.26	
New Mexico	0.25	
Wisconsin	0.10-0.25 (depends if stabilized)	

Specification / Information Review

- Kansas
- New Mexico
- Ohio
- Utah
- Washington
- British Columbia
- Ontario
- ARRA

Specification Sections

- Description
- Materials
- Mix Design
- Construction QC/QA
- Equipment
- Climatic Conditions
- Measurement/Payment
- Layer Coefficients

Description (ARRA)

- Surface Recycling
- Remixing
- Repaving

Materials - Binders

State	Asphalt Binder	
British Columbia	Emulsified recycling agent / Recycling agent	
Colorado	Asphalt rejuvenating agent	
New Mexico	Emulsified recycling agent (blend meet PG binder grade)	
Ontario	Select material to provide blend that meets 50 to 80 pen	
Utah	Emulsified recycling agent	
Washington	Emulsified recycling agent / PG 58-22	

State	Method	
Kansas	Air voids, TSR, rutting resistance, thermal cracking	
New Mexico	Must meet specifications for HMA – Section 423	
Ohio	Marshall stability, penetration	
Washington	Superpave, air voids	

QC/QA - In-Place Density

State	Density Requirement		
British Columbia	97% of lab density		
Colorado	92 to 96% of maximum theoretical		
New Mexico	92 to 98% of maximum theoretical		
Ontario	Lab compacted air voids between 2.5% and 5.5% (75b Marshall)		

QC/QA – Surface Tolerance & Thickness

State	Surface Tolerance	Thickness
Colorado	Profile Index – dependent upon roadway traffic volume	
New Mexico	1/8-in transverse 1/8-in longitudinal	As specified
Ontario		2-in max, 1.5-in typ

Equipment (Typ.)

- Remove all material from pavement surface broom
- Self propelled
- Enclosed combustion area
- No open flame in direct contact with pavement
- Capable of heating pavement to desired temperature
- Capable of scarifying the heated pavement to the desired depth

Equipment (Typ.)

- Requirements on laydown temperature of material
 - Typ. Min. 190°F to 230°F
 - Typ. Max. 300°F to 315°F
- Scarification does not break the aggregate particles
- Heating does not char the asphalt surface
- Uniformly distribute material
- Rolling operation must obtain the desired pavement density

Climatic Conditions – Do Not Construct

- Ambient air temperature
 - ex. below 40 to 50°F
- Pavement temperature below
 - ex. below 50°F
- When roadway surface is wet
- Weather conditions prevent proper placement
- Between specific months
 - ex. October 16 to May 14

Measurement / Payment

- Payment based on square yard or unit price per station
- Payment may include bituminous materials on a volume or weight basis

Layer Coefficients

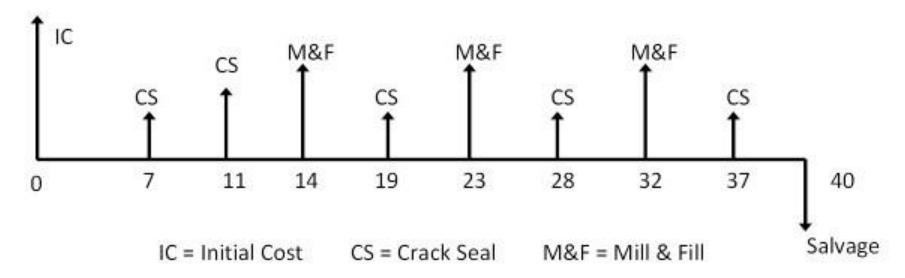
State	Layer Coefficient
None	None Available
Suggested Value	0.40 - 0.44

Value of Recycling – Percent Savings Relative to Conventional Construction

Initial Construction*

	CIPR	FDR	HIPR - Remix
Energy, BTU	22	16	25
AC Consumed, tons	16	-2	35
Aggregate Consumed, tons	33	72	44
Price, \$	23	52	16**
CO _{2eq} , Ib	30	60	22

^{**}Based on limited information



^{*}equivalent square yards

Life Cycle Assessment Format

Reconstruction

- 40-year period was selected
- 4-percent discount rate

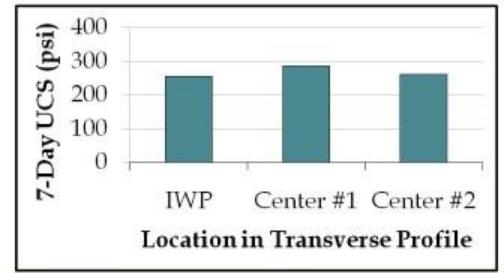
Value of Recycling – Percent Savings Relative to Conventional Construction – LCA*

	CIPR	FDR	HIPR - Remix
Energy, BTU	9	25	10
AC Consumed, tons	6	14	13
Aggregate Consumed, tons	14	63	18
Price, \$	14	48	10**
CO _{2eq} , Ib	13	54	10

^{**}Based on limited information

^{*}equivalent square yards

Performance Specifications

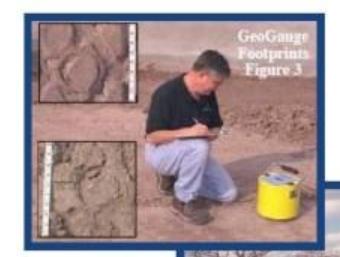


New Technologies to Establish the Uniformity of Stabilizer Application

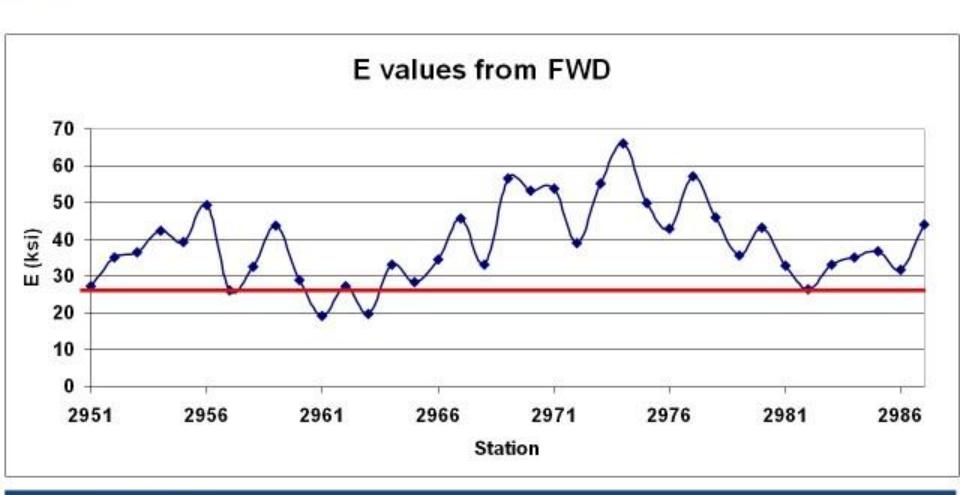
- X, Y, Z direction
- Tools available
 - pH type test
 - PFWD or Seismic
 - Strength test
 - Other

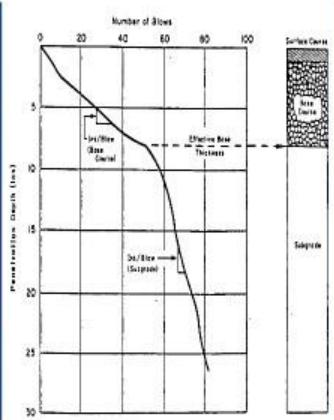
Deflection/Stiffness Systems

Portable FWD



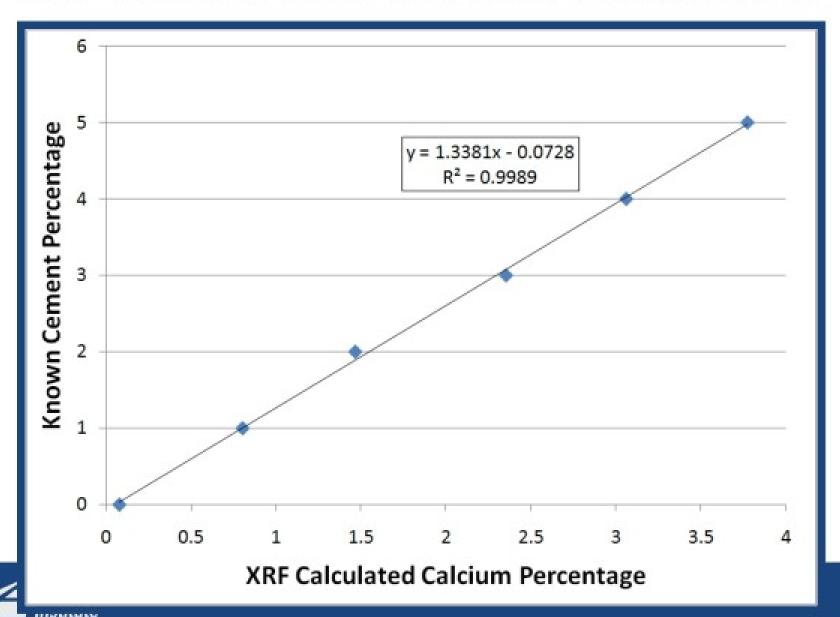
Testing During and After Construction


- Humboldt GeoGauge
- Falling Weight Deflectometer
- Both devices worked well
- Both measure stiffness of stabilized layer

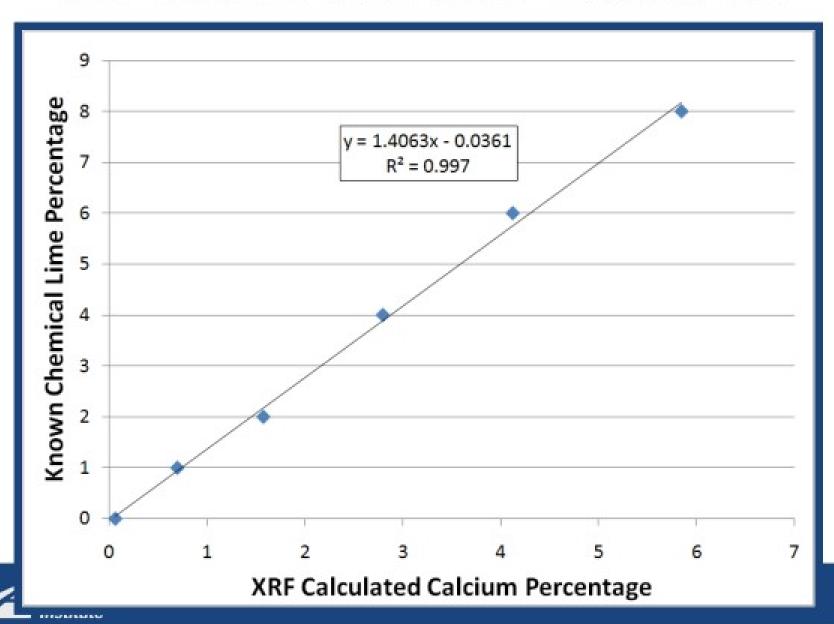

Comparison on Measured Modulus versus Value Assumed in Design

Dynamic Cone Penetrometer

Measures both layer stiffness (from penetration rate) and layer thickness (change in penetration rate)


Measuring Stabilizer Content with XRF

Lab tests conducted on


- 40% Kaolinite/60% Quartz sand
- 0-5% Cement
- 0-8% Chemical Lime
- 3 XRF measurements on each

XRF Results with Cement-treated Soil

XRF Results with Lime-treated Soil

Summary

- Procedure currently in use
- Take deflections after 5 days
- Investigate failing areas with DCP
- Simple targets based on design assumptions
- FWD works well
 - Repeatable and consistent
- No accounting for temperature or age.
- Portable FWD has repeatability issues
 - To be resolved

Questions

