Developing Standards and Specifications for Full Depth Pavement Reclamation

Mansour Solaimanian, Ph.D., P.E.
Penn State University
Outline

1. About This Research Project
2. Field Projects (Pilot Projects)
3. Mix Design Considerations
4. Summary
About The Research Project

- **Goal:** Developing Standards and Specifications for Full Depth Pavement Reclamation

- **Sponsor:** Pennsylvania Department of Transportation

- **Duration:** January 2010-May 2011

- **Budget:** $150,000
About The Research Project

- Technical Advisor: C. Goodhart
- Contract Manager: B. Fields
- Project Manager: K. Ferroni
- Technical Panel: A. Azab, B. Harter, S. Dietz

- Research Team (QES/PSU):
 - D. Morian (PI),
 - M. Solaimanian (Co-PI),
 - Barry Scheetz (Research)
About The Research Project

- Project Tasks
 - Survey of FDR Practices in Various States
 - Update PennDOT Pubs, Manuals, Bulletins
 - Bulletin 27 – Design & Specs for Bituminous Mixtures
 - Pub 242 – Pavement Policy Manual
 - Pub 408 – Highway Construction Specifications
 - Pub 447 – Approved Products for Low Volume Roads
 - Construct Pilot Projects
 - Develop Standards/Specification
 - Conduct Train-the-Trainer Courses
Important Sources

- State Highway Agencies
- ARRA
- PAMAA (PA Asphalt Mat’l Appl. Association)
- PennDOT BOMO & Municipal Services
- PennDOT Pub. 447
- FHWA Publication No. FHWA-SA-98-042 (Pavement Recycling Guidelines for State and Local Governments, Participant’s Reference)
Best Practice/Spec Development

- Address Four Major Sections:
 - Pavement Evaluation & Assessment
 - Mix Design
 - Construction
 - Quality Assurance/Performance Measurement
Best Practice/Spec Development

- Pavement Evaluation & Assessment
 - Traffic (ADT)
 - Pavement Condition/Distress Survey
 - FWD
 - CPT or DCP
 - Sampling
Best Practice/Spec Development

- Mix Design
 - Materials Selection
 - Specimen Preparation Techniques/Curing
 - Tests to Evaluate Properties
Best Practice/Spec Development

- **Construction**
 - Equipment
 - Process

- **Quality Assurance**
 - QC/QA Tests to run?
 - Criteria to use?
1 About This Research Project
2 Field Projects (Pilot Projects)
3 Mix Design Considerations
4 Summary
Pilot Projects

- SR 1017 (Honey Moon Trail)
 - Dauphin County - Lykens Township
 - Length: 8,156 feet – 1.544 miles
 - Pavement Width: 14-18 Feet

- SR 3016 (Plains Church Road)
 - Butler County – Cranberry/Adams Township
 - Length: Approximately 2 miles
 - Pavement Width: 15-18 Feet
Pavement Structure - Dauphin-SR 1017

- HMA & Multiple Chip Seal Layers
- Large Size Aggregate Base
- Subgrade

- A CIR Project rather than FDR
Field Investigation– Dauphin – SR 1017
Dauphin – SR 1017 – Truck Traffic
Field Investigation– Dauphin – SR 1017
Field Investigation– Butler Co. – SR 3016
Field Investigation—Butler Co. – SR 3016
Field Investigation– Butler Co. – SR 3016
Field Investigation– Butler Co. – SR 3016
Field Investigation – Butler Co. – SR 3016
1. About This Research Project
2. Field Projects (Pilot Projects)
3. Mix Design Considerations
4. Summary
Mix Design – Dauphin – SR 1017

- **Materials**
 - Reclaimed Pavement
 - Hauled-In RAP
 - Emulsion *(Evaluate Aggregate Coating - ASTM 6998)*
 - Coarse Aggregate *(AASHTO # 67)*
 - Cement

- **Design**
 - SGC : 6-in diameter specimens, No. of Gyrations?
 - Density & Indirect Tensile Strength
 - Optimum Water Content?
 - Optimum Emulsion
 - Check Moisture Damage Resistance
Mix Design – Dauphin – SR 1017

Dauphin Pit 1

Dauphin Pit 2

Dauphin Pit 3
Mix Design – Dauphin Co. – SR 1017
Indirect Tensile Strength
Mix Design – Dauphin Co. – SR 1017

Moisture Damage Resistance

51 mm/min @ 25 °C

Avg Dry Tensile Strength

Avg Wet Tensile Strength

TSR = \frac{\text{Avg. Wet Strength}}{\text{Avg. Dry Strength}} \geq 80\%
Mix Design– Dauphin Co. – SR 1017

Testing for Indirect Tensile Strength

![Graph showing indirect tensile strength data for Dauphin Co. - SR 1017 with different labels for each curve.](image)
Mix Design – Dauphin Co. – SR 1017

![Graphs showing data for Dauphin Co. SR 1017 with equations and R² values.](image-url)
Mix Design– Dauphin Co. – SR 1017

#67 Aggregate
Mix Design – Butler Co. – SR 3016

- **Materials**
 - Existing Pavement- HMA and Seal Coat
 - Existing Pavement – Stabilized Earth
 - Cement
 - Fly Ash?
 - Coarse Aggregate?

- **Design**
 - Standard Proctor : 4-in diameter specimens
 - Maximum Dry Density & Optimum Water Content
 - Unconfined Compressive Strength
 - Optimum Cement (Fly ash) Content
Mix Design – Butler Co. – SR 3016

Compact Specimens Using Standard Proctor Procedure
Mix Design – Butler Co. – SR 3016

Water Content-Dry Density Relationship
(Volumes from Corelok Device)

\[y = -0.0039x^2 + 0.0806x + 1.5068 \]

\[R^2 = 0.9654 \]
Thank You!