Experiences with In-Place Pavement Recycling (FDR)

August 25, 2010

Michael Wells, PE
Richmond District Assistant Materials Engineer, VDOT

Brian Diefenderfer, PhD, PE
Research Scientist, Virginia Transportation Research Council
In-Place Recycling

• New Technology for Virginia???
 – Been used in past
 • Subdivisions
 • Secondaries
 – Limited Use in Recent Years
 • Standard practice has been mill and fill
 – 2 Lifts
 • Potential Use is Greater Now
Virginia In-Place Recycling Industry

- Primarily FDR
- 1 contractor using portland cement
 - completed 3 VDOT jobs (22 lane miles)
- 1 contractor using asphalt (primarily foam)
 - completed 1 project
 - actively pursuing additional work
VDOT Processes
Richmond District Perspective

- Selection of future FDR projects – no formal criteria exists
 - Pavement rating data (NDR, LDR)
 - Pavement history
 - Pavement investigation (FWD, Cores, Subgrade)
 - District decision

- An option in VDOTs PMS?
 - Option as a reconstruction alternative
 - Not specifically spelled out

- How are FDR projects designed – AASHTO 93
 - Resilient modulus of subgrade (FWD or CBR)
 - Layer coefficient for FDR and CIR = 0.30
VDOT Processes
Richmond District Perspective

• How is cost-effectiveness demonstrated
 – Material cost comparison – Reclamation vs Full Depth Replacement
 • Calculated as approx. 45% savings vs. deep mill and repaving
 – Project duration analysis

• What challenges are faced by decision makers
 – Acceptance of process (Department, Industry, Public)
 – Performance history
Richmond District Projects

2008
- Single Contract ($2.3 million)
 - Manipulation 8 inches
 - $3.52/sy
- Two Primary Routes
 - Route 13 in Powhatan County
 - Route 6 in Goochland County
- FDR with 5% cement
 - No VDOT Special Provision
 - Project Specific Notes governing work

- Approximate Cost of Cement was $130/ton

2010
- Single Contract ($755,000)
 - Manipulation 12 inches
 - $3.73/sy
- Primary Route
 - Route 60 in Powhatan County
- FDR with 5% cement
 - VDOT Special Provision Included
Route 13

- 8 inch FDR with 2 lift overlay
 - 1 inch 9.0mm surface (64-22)
 - 1.75 inch 12.5mm surface

- Pavement Rating of 56

- Route Geometry
 - Two lane primary with 11 foot lanes
 - manipulation total 23 feet
 - Project length 3.71 miles

- Traffic
 - 1700 ADT with 11% trucks (8% tractor trailers)
 - Primarily logging trucks

- Maintenance of Traffic during Construction
 - Need to return to service upon completion of daily operations

- Project testing
 - Depth of manipulation
 - Gradation of manipulation
 - In-place density – average 98% with no 1 test less than 95%
Results

• **Production was approximately 1000 ft/day**
 - Surface Treatment placed prior to opening to traffic
• **Depth (Must be ± 0.5 inch of specified)**
 - No production problems achieving depth of manipulation
 • Isolated locations > 10 inches based on field conditions
• **Gradation (Performed every 1000 feet)**
 - 2 inch (95 – 100% passing), 1 inch (85 – 95% passing)
 - No issues with achieving gradation
• **In-Place Density (average 98% with no 1 test being below 95%)**
 - Density achieved (No reported failing densities)
 • 250 foot spacing for testing
• **Issues with core hole patching**
Route 6

- Mill 2 inches, 8 inch FDR with 2 lift AC overlay
 - 1.5” 9.5mm surface (64-22)
 - 2 inch 12.5mm surface
- Pavement Rating of 40
- Route Geometry
 - Two lane primary with 11.5 foot lanes
 - Manipulation total 25 feet
 - Project length was 3.66 miles
- Traffic
 - 3800 ADT with 6% trucks (4% Tractor Trailers)
- Maintenance of traffic during construction
 - Need to return to service upon completion of daily operations
- Project testing
 - Depth of manipulation
 - Gradation of manipulation
 - In-place density – average 98% with no 1 test less than 95%
Results

• Production was approximately 1100 ft/day
 – Surface treatment placed prior to opening to traffic

• Depth (must be ± 0.5 inch of specified)
 – No production problems achieving depth of manipulation

• Gradation (performed every 1000 feet)
 2 inch (95 – 100% passing)
 1 inch (85 – 95% passing)
 – No issues with achieving gradation

• In-place density (average 98% with no 1 test being below 95%)
 – No reported failing densities
 • 250 foot spacing for testing
Route 60

- 12 inch FDR with 2 lift AC overlay
 - 1.5 inch 12.5mm surface (64-22)
 - 2 inch 19mm intermediate

- Pavement Rating of 26

- Route Geometry
 - Two lane Primary w/12 foot lanes
 - Manipulation will total 29 feet
 - Project length was 1.66 miles

- Traffic
 - 26,520 ADT w/5% trucks (4% Tractor Trailers)

- Maintenance of Traffic during Construction
 - Reduce travel lane to one during construction (permanent)

- Project testing
 - Depth of manipulation
 - Unconfined compressive strength
 - In-place density
Results

- Production was approximately 1750 ft/day

- Depth (minimum from approved pavement design)
 - No production problems achieving depth of manipulation

- Unconfined compressive strength (minimum 250 psi)
 - Issues?
 - Specification does not specifically spell out if the criteria is based on average of specimens or individual results.

- In-place density (minimum 97% of maximum density from design)
 - No reported failing densities
Lessons Learned (1)

• Project Selection
 – Formal criteria vs. district decision

• Upfront Homework Important
 – Pavement Condition – FWD, pavement cores
 – Depth of existing pavement

• Contractor and Department Experience
 – Familiarity breeds acceptance/less resistance

• Need for a Specification
 – Clearly define requirements
 – Require contractor experience? Does it limit competition?
Lessons Learned (2)

• Coring samples
 – Equipment & patch material
 – For lab testing of production, remold loose mix?

• Proof-rolling
 – Not part of specification but was performed on each project

• Performance Monitoring
VDOT Specification
Full-Depth Pavement Recycling

- **Demonstrated Experience**
 - Contractor demonstrated (successful) experience
 - 3 projects during last 3 years (total of 50,000 sy)
 - Supervisor and equipment operators – 3 projects in last 3 years
 - Submitted to Department for approval

- **Mix Design - option**
 - Cement/lime content
 - LL, PL, PI of soil
 - Gradation (in-situ material, RAP, other aggregate)
 - Soil classification
 - Compressive strength for soil-cement
 - Soil-lime mixture strength

- **Materials**
 - Additional material: aggregate or RAP if needed
 - Stabilizing agent – lime or cement

- **Acceptance testing**
 - Depth & density
 - Unconfined compressive strength
 - Stabilizing agent application rate – Not an “official” criteria but is tracked by project staff
2008 FDR Demo Projects

- State Routes 40, 13, 6
 - 2-lane rural primary
 - 3 binding agents
 - 8-10 inches
- Assessment
 - coring, GPR, FWD
Pulverize existing pavement
Add binding agent (foam)

Binder tanker

Water truck
Add binding agent (emulsion)
Ground Penetrating Radar

- Surface
- Original
- Reclaimed
Coring (4 months)

Rt 40, Foamed section

Rt 40, Emulsion section
Virginia In-Place Recycling Outlook

• Work for 2011
 – 2 CIR projects out to bid
 – Possibly 4 more statewide
 • long-train vs. dual train vs. single-train?

• Beyond 2011
 – Continue looking for opportunities
 – Interstate 81 reconstruction
 • 7.2 lane miles
 • current traffic approximately 20,000 w/ 31% trucks
Virginia In-Place Recycling Outlook – I-81 Reconstruction

- Existing condition
 - 11-12 inches HMA, repaved every 3-5 years
 - Fatigue cracking with fines pumping
- Design incorporating recycling
 - 4 inches SMA
 - 8 inches CIR / CCPR
 - 12 inches lime / cement treated subbase
 - Edgedrains
- Construction estimates
 - Recycling option = $<10 million
 - Traditional approach = $60-$70 million (3rd lane)
Virginia In-Place Recycling Outlook – I-81 Reconstruction

• Concerns?
 – Rutting
 – Adequate curing before traffic is returned
 – Traffic
 – Funding

• How are we trying to address our concerns?
 – Laboratory testing of similar material
 – Rely on industry / contractor expertise
VDOT In-Place Recycling Research

• Empirical testing
 – develop typical FDR layer coefficient
 • based on binding agents used on 3 demo projects
 – rutting tests using asphalt pavement analyzer

• Mechanistic testing
 – repeated-load permanent deformation (flow number)
 – dynamic modulus
 – modeling
Contact info:

michael.wells@vdot.virginia.gov

brian.diefenderfer@vdot.virginia.gov