Life-Cycle Cost Analysis

Tashia J. Clemons
Federal Highway Administration
Office of Asset Management
Objective

FHWA Updates & LCCA

1. FHWA Updates
2. LCCA program status
3. State Example
Keeping Good Roads Good
2010-2011
Corridor assessment

- I-95 corridor
- What data are states using to manage “conditions” of I-95
- Common performance indicators
- Good, Fair or Poor
- MD-DE-VA
- “Evaluation of Highway Performance Measures for a Multi-Study Corridor - A Pilot Study”
 http://www.fhwa.dot.gov/asset/hif10015/
Keeping Good Roads Good

Infrastructure Health Project

- 2 objectives

1. Identify performance indicators
 - Good, fair & poor
 - Condition Data needed
 - Reported

2. Identify pavement health indicators
 - What do we need to measure
• Four-week training, blended learning

• Target audience: state and local maintenance supervisors

• Strong emphasis on preservation and performance improvement
Maintenance Leadership Academy

Six Modules

✓ Maintenance Management
✓ System Preservation
✓ Roadsides and Drainage
✓ Weather-related Operations
✓ Safety and Workzones
Life-Cycle Cost Analysis
LCCA Program Status

Distance Learning Course

Onsite RealCost LCCA Workshop

RealCost User Manual

Technical Bulletin

Bridge LCCA
Life-Cycle Cost Analysis Definition

- Life-Cycle Cost Analysis is a **process** for evaluating the total economic worth of a usable project segment by analyzing initial costs and discounted future costs, such as maintenance, user, reconstruction, rehabilitation, restoring, and resurfacing costs, over the life of the project segment.

Source: Transportation Equity Act for the 21st Century
Pavement Preservation vs. Reconstruction

State Examples

Arizona State DOT

Washington State DOT
Pavement Preservation vs. Reconstruction

Arizona Department of Transportation

- Continuous weakening of substructure material
- Cost & performance

- Sponsored a Study - Cost-Benefit Analysis of Continuous Pavement Preservation Design Strategies Versus Reconstruction Final Report 491

Prepared by: K.L. Smith, L. Titus-Glover, M.I. Darter, H.L. Von Quintus, R.N. Stubstad, and J.P. Hallin
- Break-even
- Continuous preservation
- Rehabilitation treatments
Life-Cycle cost Analysis (LCCA)

- Probabilistic approach
- FHWA’s LCCA spreadsheet program
Input Analysis

- Pavement performance
- Service life estimates
- Best estimates of unit costs
- Work zone-related user cost
- Discount rates
- Analysis period
Alternative Strategies

- Life Cycle Cost
 - 4 strategies
 - 15 commonly occurring pavement scenarios
Traffic Info Used in LCCA

<table>
<thead>
<tr>
<th>Project ID</th>
<th>AADT, veh/day (^a)</th>
<th>Cars as Percentage of AADT, %</th>
<th>Percent Single Trucks (^b)</th>
<th>Percent Combo Unit Trucks (^b)</th>
<th>Annual Growth of Traffic, %</th>
<th>Speed Limit, mi/hr</th>
<th>Lanes Open (^c)</th>
<th>Free Flow Capacity, vphpl</th>
<th>Rural or Urban? (^d)</th>
<th>Queue Dissipation Capacity, vphpl</th>
<th>Maximum AADT, veh/day (^e)</th>
<th>Maximum Queue Length, mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell 1</td>
<td>10,000</td>
<td>77</td>
<td>13</td>
<td>10</td>
<td>2.5</td>
<td>70</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 2</td>
<td>18,000</td>
<td>72</td>
<td>18</td>
<td>10</td>
<td>2.5</td>
<td>70</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 3</td>
<td>13,000</td>
<td>85</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>1</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 4</td>
<td>6,000</td>
<td>84</td>
<td>6</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 5</td>
<td>7,500</td>
<td>83</td>
<td>7</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 6</td>
<td>17,000</td>
<td>66</td>
<td>24</td>
<td>10</td>
<td>2.5</td>
<td>70</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 7</td>
<td>23,000</td>
<td>75</td>
<td>15</td>
<td>10</td>
<td>2.5</td>
<td>70</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 8</td>
<td>9,000</td>
<td>79</td>
<td>11</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 9</td>
<td>14,000</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>1</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 10</td>
<td>1,400</td>
<td>83</td>
<td>7</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>1</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 11</td>
<td>17,000</td>
<td>66</td>
<td>24</td>
<td>10</td>
<td>2.5</td>
<td>70</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 12</td>
<td>80,000</td>
<td>85</td>
<td>5</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>3</td>
<td>2,200</td>
<td>Urban</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 13</td>
<td>25,000</td>
<td>75</td>
<td>15</td>
<td>10</td>
<td>2.5</td>
<td>70</td>
<td>2</td>
<td>2,200</td>
<td>Rural</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 14</td>
<td>240,000</td>
<td>81</td>
<td>9</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>5</td>
<td>2,200</td>
<td>Urban</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Cell 15</td>
<td>75,000</td>
<td>86</td>
<td>4</td>
<td>10</td>
<td>2.5</td>
<td>55</td>
<td>3</td>
<td>2,200</td>
<td>Urban</td>
<td>1,800</td>
<td>100,000</td>
<td>4</td>
</tr>
<tr>
<td>Bid Item</td>
<td>Unit</td>
<td>Description Bid Item Components</td>
<td>Unit Price</td>
<td>Quantity Per Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
<td>---</td>
<td>------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Concrete Friction Course</td>
<td>ton</td>
<td>Asphalt Concrete Friction Course</td>
<td>$28.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FC)</td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Asphalt Cement for ACFC</td>
<td>$154.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Mineral Admixture for ACFC</td>
<td>$97.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Rubber AC Friction Course</td>
<td>ton</td>
<td>Asphalt Rubber AC Friction Course</td>
<td>$29.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FR)</td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Asphalt Cement for AR-ACFC</td>
<td>$274.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Mineral Admixture for AR-ACFC</td>
<td>$97.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Concrete (AC)</td>
<td>ton</td>
<td>Asphalt Concrete (3/4" Mix)</td>
<td>$22.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Asphalt Cement for AC (3/4" Mix)</td>
<td>$154.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Mineral Admixture for AC (3/4" Mix)</td>
<td>$97.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asphalt Rubber AC (AR)</td>
<td>ton</td>
<td>Asphalt Rubber AC</td>
<td>$25.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Asphalt Cement for AR-AC</td>
<td>$260.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ton</td>
<td>Mineral Admixture for AR-AC</td>
<td>$97.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued....
Agency Construction Cost

<table>
<thead>
<tr>
<th>Bid Item</th>
<th>Unit</th>
<th>Description Bid Item Components</th>
<th>Unit Price</th>
<th>Quantity Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bituminous Pavement (milling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 0.5"</td>
<td>$0.54</td>
<td>20,000</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 1.0"</td>
<td>$0.76</td>
<td>18,000</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 2.0"</td>
<td>$1.10</td>
<td>16,000</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 2.5"</td>
<td>$1.25</td>
<td>15,000</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 3.0"</td>
<td>$1.35</td>
<td>14,000</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 3.5"</td>
<td>$1.40</td>
<td>13,500</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 4.0"</td>
<td>$1.50</td>
<td>13,000</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 4.5"</td>
<td>$1.60</td>
<td>12,500</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>Milling depth = 5.0"</td>
<td>$1.70</td>
<td>12,000</td>
</tr>
<tr>
<td>JPC (nondoweled PCC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>11.0-in PCC</td>
<td>$27.00</td>
<td></td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>12.0-in PCC</td>
<td>$29.00</td>
<td></td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>12.5-in PCC</td>
<td>$30.00</td>
<td>2,500</td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>13.0-in PCC</td>
<td>$31.00</td>
<td></td>
</tr>
<tr>
<td>yd²</td>
<td></td>
<td>13.5-in PCC</td>
<td>$32.00</td>
<td></td>
</tr>
<tr>
<td>Continued...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Value of Time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of Time for Passenger Cars ($/hour)</td>
<td>$3.08</td>
</tr>
<tr>
<td>Value of Time for Single Unit Trucks ($/hour)</td>
<td>$20.95</td>
</tr>
<tr>
<td>Value of Time for Combination Trucks ($/hour)</td>
<td>$25.21</td>
</tr>
</tbody>
</table>
Final results

- Reduction in total LCC
- Increase (from 0 to 2) in the number of rehabs between original construction and the first reconstruction events
- 9 of the 15 scenarios
- Break-even point
 - Occurs after 2 to 3 cycles of rehab
Washington State DOT

- 1993 Revised Code WA
 - Required project selection be based on the lowest life cycle cost concept
 - Optimal timing (opportunity window) 2 to 3 yrs
Life-Cycle Cost Analysis

Washington State DOT

Rehabilitation Cycle (years)

Annual Cost

4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 10 20 30 40 50 60
Network level Economic Analysis

- Design life yielded the most benefits

- Pavement Management System (PMS)
 - Pavements
 - Anticipated deterioration curves
 - Rehabilitation activity cycles
 - Anticipated costs in the year the activity would occur
• “worst first” to “a needs based approach”.

• 3 performance measures of pavement distress.

 1. Pavement Structural Condition (PSC)
 2. International Roughness Index (IRI)
 3. Rutting
Minimum Rating

- 50 for PSC
- 220 inches/mile for IRI
- 10 mm (.4 in) for rutting

- The LCCA validation process was conducted again in 2000
Pavement Structural Condition (Statewide - All Pavements)

Life-Cycle Cost Analysis

Washington State DOT
• Lowest LCC by conducting preservation activities
 – Early stages of deterioration to prolong their life
 – Need for major rehabilitation
Success is measured by network condition of their pavements

- In 1971
 - 50% poor conditions

- Today
 - Less 10% are in poor condition
Resource Documentation

- Arizona report

 Cost-Benefit Analysis of Continuous Pavement Preservation Design Strategies Versus Reconstruction

- FHWA Case Study

 Pavement Management Systems The Washington State Experience

Resources

Training

Fundamentals of Life Cycle Cost Analysis Live Instructor Led Distance Learning Course

Onsite RealCost Life-Cycle Cost Analysis (LCCA) Software Workshop

http://www.fhwa.dot.gov/infrastructure/asstmgmt/lcca.cfm
Life-Cycle Cost Analysis

Resources

LCCA Primer
FHWA-IF-02-047

Technical Bulletin
FHWA-SA-98-079

Transportation Asset Management Case Studies

LCCA Software
RealCost 2.5
and
User Manual

http://www.fhwa.dot.gov/infrastructure/asstmgmt/lcca.cfm
Thank you

Tashia J. Clemons
tashia.clemons@dot.gov
FHWA HQ
Office of Asset Management
1200 New Jersey Ave SE
Washington, DC 20590
202-366-1569

http://www.fhwa.dot.gov/infrastructure/asstmgmt/lcca.htm