Performance Guidelines for the Selection of Hot-Poured Bituminous Crack Sealants

Imad L. Al-Qadi
S-H Yang
Eli Fini
J-F Masson
Kevin McGhee

NEPPP Meeting - November 4, 2009
<table>
<thead>
<tr>
<th>Crack Sealant Performance Grade</th>
<th>SG-46</th>
<th>SG-52</th>
<th>SG-58</th>
<th>SG-64</th>
<th>SG-70</th>
<th>SG-76</th>
<th>SC-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Viscosity, SC-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Viscosity (Pa.s)</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Viscosity (Pa.s)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum Oven Residue (SC-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Shear, SC-4</td>
<td>46</td>
<td>52</td>
<td>58</td>
<td>64</td>
<td>70</td>
<td>76</td>
<td>82</td>
</tr>
<tr>
<td>Min. Flow Coefficient (kPa.s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Min. Shear Thinning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Crack Sealant BBR, SC-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Stiffness (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Min. Avg. Creep Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>Crack Sealant DTT, SC-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Extendibility (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crack Sealant DBT, SC-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. Load (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Min. Energy (J/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>
Outline

- Introduction on Crack Sealants
- Study Objectives
- Study products/specifications
 - Constructability
 - Accelerated aging
 - High temperature
 - Low temperature
- Preliminary field validation
- Summary & Future Research
Crack Sealant

Compresses both adhesive properties to form a seal between voids and solids from the pavement system — a viscoelastic, rubbery material that withstands extension and weathering.
Crack Sealant

- Polymer-modified bitumen with a filler
 - Polymer
 - Styrene-Butadiene copolymer (SBS)
 - Reduces thermal susceptibility
 - Filler
 - Ground tire rubber (GTR)
 - Mineral filler
 - Provides body and improves wearing resist
Crack Treatment Action

- Crack sealing/filling is the most widely used maintenance activity of in-service pavements
 - Sealing – use for working crack
 - Filling – use for non-working crack
- Inexpensive, quick, and a well-proven technique to delay pavement deterioration
 - Reduces water penetration
 - Maintains pavement structural capacity
 - Improves road rideability
 - Extends pavement service life (2 years ↑)
Crack Sealant Failure

- Failure Modes:
 - Cohesive
 - Adhesive
 - Tracking
 - Intrusion
Current ASTM Specifications

<table>
<thead>
<tr>
<th>Sealant Property</th>
<th>Test Method</th>
<th>ASTM Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Characteristics</td>
<td>Viscosity (binder)</td>
<td>D4402</td>
</tr>
<tr>
<td>Adhesion</td>
<td>Bond Test</td>
<td>D5329</td>
</tr>
<tr>
<td></td>
<td>Asphalt Compatibility</td>
<td>D5329</td>
</tr>
<tr>
<td>Extensibility</td>
<td>Elongation (rubber)</td>
<td>D412</td>
</tr>
<tr>
<td></td>
<td>Ductility (binder)</td>
<td>D113</td>
</tr>
<tr>
<td>Durability</td>
<td>Track Abrasion (slurry)</td>
<td>D3910</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Flexibility</td>
<td>D5329</td>
</tr>
<tr>
<td></td>
<td>Cone Penetration</td>
<td>D5329</td>
</tr>
<tr>
<td>Tracking</td>
<td>Flow</td>
<td>D5329</td>
</tr>
<tr>
<td></td>
<td>Softening Point</td>
<td>D36</td>
</tr>
<tr>
<td>Intrusion Resistance</td>
<td>Resilience</td>
<td>D5329</td>
</tr>
<tr>
<td></td>
<td>Aged Resilience</td>
<td>D5329</td>
</tr>
</tbody>
</table>
Objective – Phase 1 Study

- Development of performance-based guidelines for the selection of hot-poured crack sealant
 - Make use of SuperPave™ binder-testing equipment
 - Adapt the spirit of the binder Performance Grade (PG) specifications
 - Place emphasis on fundamental properties that relate in a rational way to performance
Crack Sealant Used in the Study

<table>
<thead>
<tr>
<th>ID</th>
<th>Notes</th>
<th>Cone Pen. 25° C (dmm)</th>
<th>Flow 60° C (mm)</th>
<th>Aged Resilience 25° C (%)</th>
<th>Bond (P/F)</th>
<th>Asphalt Comp. (P/F)</th>
<th>Softening Point (° C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QQ</td>
<td>Stiffest sealant</td>
<td>22</td>
<td>0</td>
<td>36</td>
<td>N/A</td>
<td>P</td>
<td>220</td>
</tr>
<tr>
<td>ZZ</td>
<td>San Antonio, TX</td>
<td>42</td>
<td>N/A</td>
<td>N/A</td>
<td>P</td>
<td>N/A</td>
<td>212</td>
</tr>
<tr>
<td>AB</td>
<td>San Antonio, TX</td>
<td>40</td>
<td>N/A</td>
<td>23</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>UU</td>
<td>SHRP H106</td>
<td>62</td>
<td>1.5</td>
<td>N/A</td>
<td>P</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LL</td>
<td>Virginia</td>
<td>68</td>
<td>2</td>
<td>50</td>
<td>P</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NN</td>
<td>Minnesota</td>
<td>75</td>
<td>0</td>
<td>70</td>
<td>P</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AE</td>
<td>NY, VA, and NH</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PP</td>
<td>Minnesota</td>
<td>130</td>
<td>1</td>
<td>44</td>
<td>P</td>
<td>P</td>
<td>N/A</td>
</tr>
<tr>
<td>A</td>
<td>Montreal</td>
<td>86</td>
<td>0.5</td>
<td>57</td>
<td>F</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>B</td>
<td>Montreal</td>
<td>68</td>
<td>0.5</td>
<td>64</td>
<td>P</td>
<td>P</td>
<td>N/A</td>
</tr>
<tr>
<td>E</td>
<td>Montreal</td>
<td>124</td>
<td>1</td>
<td>73</td>
<td>P</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>G</td>
<td>Montreal</td>
<td>50</td>
<td>0.5</td>
<td>51</td>
<td>F</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>J</td>
<td>Montreal</td>
<td>66</td>
<td>6</td>
<td>48</td>
<td>P</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Crack Sealant Performance Tests
Evaluate sealant constructability

Test modifications and protocol
- Rotational Viscometer (Brookfield)
- Rigid rod
- Melting time
 - 20min
- Spindle size
 - SC-27
- Speed
 - 60rpm
A minimum and maximum apparent viscosity of 1 and 3.5 Pa.s
Simulates Crack Sealant Weathering in Kettle & Field

- Test method
 - Vacuum oven aging
- Test protocol
 - Place 30 ± 0.5g of sealant on a PAV pan
 - Thickness of the sealant film ~ 2mm
 - Apply 115°C in vacuum oven for 16hrs
Dyn. Shear Rheom. (SC-4)

- High temperature tracking resistance
- Correlate tracking flow with DSR
- Test protocol
 - Creep-recovery test
 - Apply 2s of shear stress followed by 18s of recovery
 - Apply 8 levels of stresses (25, 50, 100, 200, 400, 800, 1600, and 3200 Pa)
A minimum flow coefficient of 4k Pa.s and a shear thinning exponent of 0.7
Low Temperature Performance

• Bulk Properties
 – Flexural Properties
 • Modified Bending Beam Rheometer (SC-5)
 – Extendibility
 • Direct Tension Test (SC-6)

• Adhesion Properties
 – Work of Adhesion
 – Direct Adhesion Test (SC-7)
 – Blister Test (SC-8?)
Bending Beam Rheom. (SC-5)

- Low load
- Excess deformation
 - Deformation
 - Load
Bending Beam Rheom. (SC-5)

- Performance parameter

- A maximum stiffness of 25MPa and a minimum average creep rate of 0.31
Direct Tension Test (SC-6)

- **Low Temperature Extendibility**
- Simulates loading condition in the field
- Test modifications and protocol
 - Increase extension capacity
 - SuperPave™ (33%) → Crack Sealant (90+%)
 - Specimen Dimension
 - 3mm (depth) x 24mm (length)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Max Crack (%)</th>
<th>Min Crack (%)</th>
<th>Fast Move. (mm/min)</th>
<th>Slow Move. (mm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith & Romine, 1993</td>
<td>18</td>
<td>2.5</td>
<td>5×10^{-3}</td>
<td>2.77×10^{-4}</td>
</tr>
<tr>
<td>Linde, 1988</td>
<td>63</td>
<td>N/A</td>
<td>8×10^{-3}</td>
<td>5×10^{-5}</td>
</tr>
<tr>
<td>Cook et al., 1991</td>
<td>+90</td>
<td>6</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Masson & Lacasse, 1999</td>
<td>16</td>
<td>7</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Direct Tension Test (SC-6)

- Performance parameter
 - Extendibility (λ)
 \[\lambda = \frac{\Delta L}{L_{\text{eff}}} \]
 - ΔL = at breaking point
 - at max. deformation
 - at point ($P_2/P_1 < 90\%$)
 - The extendibility criterion based on various climatic conditions
Adhesion Test (SC-7)

- Low temperature adhesion property
- Surface Energy Method (Work of Adhesion)
 - A compatibility test for sealant producers
- Direct Bond Method
 - A quality control test for practitioners
- Blister Test Method
 - Fundamental test for advanced research
Direct Bond Test (CS-7)

- Deformation rate controlled test
- Test protocol
 - Two aluminum half-cylinders
 - Diameter
 - 25mm
 - Sealant thickness
 - 10mm
 - Displacement rate
 - 0.05mm/s
- Specific failure location
Direct Bond Test Threshold

- Performance Parameter
 - \(P_{\text{min}} \)
 - De-bond Energy

- A minimum load of 50N and a minimum de-bonding energy of 40J/m\(^2\)
Field Validation (Limited)

- Year of installation
 - 1990
- Test site location
 - Montreal, Quebec, Canada
- Performance survey and field sample collection
 - At years 1, 3, 5, and 9
- Sealant Performance Index (PI)
 - $PI = 100 - (D + nP)$
 - $PI =$ sealant performance index;
 - $D =$ percent de-bonded length of the sealant;
 - $P =$ percent pull-out length; and
 - $n =$ an integral that accounts for the effect of pull-out over de-bonding on performance.
Sealant Performance Index

- De-bonding (%):
 - A: 11
 - B: 22
 - E: 20
 - G: 36
 - J: 13

- Pull-out (%):
 - A: 14
 - B: 1
 - E: 2
 - G: 14
 - J: 12

- Performance Index (%):
 - A: 33
 - B: 74
 - E: 72
 - G: 8
 - J: 39
Specification Comparison

ASTM D 6690 Type II Test Specification

<table>
<thead>
<tr>
<th>Test</th>
<th>Cone Penetration</th>
<th>Flow</th>
<th>Resilience</th>
<th>Bond</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Temp (C))</td>
<td>60°C</td>
<td>(Temp (C))</td>
<td>(-29°C)</td>
<td></td>
</tr>
<tr>
<td>Criteria</td>
<td>(<90 drnm)</td>
<td>(<3 mm)</td>
<td>(>60%)</td>
<td>(3 cycles)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>86</td>
<td>0.5</td>
<td>57</td>
<td>F</td>
<td>Fail</td>
</tr>
<tr>
<td>B</td>
<td>68</td>
<td>0.5</td>
<td>64</td>
<td>P</td>
<td>Pass</td>
</tr>
<tr>
<td>E</td>
<td>104</td>
<td>1</td>
<td>73</td>
<td>P</td>
<td>Fail</td>
</tr>
<tr>
<td>G</td>
<td>50</td>
<td>0.5</td>
<td>51</td>
<td>F</td>
<td>Fail</td>
</tr>
<tr>
<td>J</td>
<td>66</td>
<td>6</td>
<td>48</td>
<td>P</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Sealant Performance Based Specification

<table>
<thead>
<tr>
<th>Test</th>
<th>DSR</th>
<th>CSBBR</th>
<th>CSDTT</th>
<th>CSAT</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp (C)</td>
<td>C(kPa)</td>
<td>P(MPa)</td>
<td>S(MPa)</td>
<td>A, C, R.</td>
<td>λ(%)</td>
</tr>
<tr>
<td>A</td>
<td>3.0</td>
<td>0.67</td>
<td>21</td>
<td>0.30</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>38.3</td>
<td>0.98</td>
<td>22</td>
<td>0.31</td>
<td>92</td>
</tr>
<tr>
<td>E</td>
<td>19.3</td>
<td>0.94</td>
<td>3</td>
<td>0.44</td>
<td>93</td>
</tr>
<tr>
<td>G</td>
<td>7.0</td>
<td>0.94</td>
<td>126</td>
<td>0.24</td>
<td>0.4</td>
</tr>
<tr>
<td>J</td>
<td>7.6</td>
<td>0.94</td>
<td>602</td>
<td>0.16</td>
<td>0.7</td>
</tr>
</tbody>
</table>
- Comprehensive tests based on sealant rheological properties was developed.
- For pumping and sealing, apparent viscosity at installation temperature is recommended between 1 and 3.5 Pa.s
 - Brookfield Rotational Viscometer (*un-aged material*)
- For resistance to tracking at high service temperatures, a minimum flow coefficient of 4k Pa.s and a shear thinning exponent of 0.7 are recommended.
 - Dynamic Shear Rheometer (DSR)
To withstand low-temperature conditions, a maximum S_{240s} of 25MPa and a minimum average creep rate of 0.31 are recommended

- Modified BBR test (CSBBR)

- For crack extension, a measurement of extendibility over in-service temperature range is recommended
 - Direct Tension Tester (CSDTT)

- For appropriate sealant-crack wall bonding, a minimum load of 50N and debonding energy of 40J/m2 at tested temperature are recommended
 - Direct Adhesion Test
AASHTO Protocols - Status

• Completed Tech Section (TS-4e) Ballot:
 – SC-2, Apparent Viscosity
 – SC-3, Sealant Aging
 – SC-5, Crack Sealant BBR
 – SC-6, Crack Sealant DTT
 – SC-7, Adhesion (DAT)

• Proceeding to concurrent Ballot (SOM):
 – SC-2, 3, 5, 6, 7
 – SC-8, Blister Test
Recommended Future Work

- Laboratory validation
- Field validation
 - Monitoring test sections for four years
 - Fine-tune thresholds
- Quantify crack sealant cost effectiveness
Acknowledgements

- Federal Highway Administration Pool-Fund TPF - 5(045)
- The US-Canadian Crack Sealant Consortium:
 - New Hampshire, Virginia, Connecticut, New York, Minnesota, Texas, Washington D.C., Michigan, Georgia, Rhode Island, Maine, FHWA, City of Edmonton, Greater Toronto Airport Authority, City of Toronto, Department of National Defense-Canada, Regional Municipality of Niagara, City of Calgary, Regional Municipality of Peel, Lafarge, Ministry of Transportation of Ontario, City of Winnipeg, City of Ottawa, McAsphalt Industries Ltd.
DEVELOPMENT OF PERFORMANCE-BASED GUIDELINES FOR SELECTION OF BITUMINOUS-BASED HOT-POURED PAVEMENT CRACK SEALANT: AN EXECUTIVE SUMMARY REPORT

IMAD L. AL-QADI
Founder Professor of Engineering
Director, Illinois Center for Transportation
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign

JEAN-FRANCOIS MASSON
Senior Research Officer
Institute for Research in Construction
National Research Council of Canada

SHIH-HSIEN YANG and ELI FINI
Graduate Research Assistants
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign

KEVIN K. McGHEE
Senior Research Scientist
Virginia Transportation Research Council

www.pooledfund.org

- solicitation number 1233

• Validation and Implementation of Hot-Poured Crack Sealant Performance-Based Guidelines
Phase 2 – Anticipated Tasks

• Task 1 – Lab Validation
 – Conduct round-robin tests to develop precision and bias
 – Develop training program

• Task 2 – Field Validation
 – 8 test sections in four environmental regions
 – Two sealant types in each section
Phase 2 – Anticipated Tasks

• Task 3 – Monitoring
 – Conduct regular field inspections
 – Collect sealant samples annually:
 • Measure rheological properties to identify any changes
 – Monitor crack movement and temperature variation to provide insight into the selection of the current temperature shift used in the proposed guidelines.
Phase 2 – Anticipated Tasks

• Task 4: Fine-Tuning Threshold Values
 – Use field performance to fine-tune the testing parameter thresholds in the proposed guidelines.

• Task 5: Quantify the Cost Effectiveness of Using Crack Sealants
 – Measure pavement condition annually, in accordance with SHRP Distress Manual, to examine the cost effectiveness of crack sealant.
Lead State and Contact:
- Virginia, Kevin McGhee
 (Kevin.McGhee@VDOT.Virginia.gov)

Partners (confirmed):
- NH, NY, VA, WI, (MN?)

Commitments:
- Suggested - $25k/yr for four years
- Required - $1,000,000 Total
- Received - $325,000

Solicitation Expires – 2/27/2010!!
Questions & Comments