

FLH Study on Polymer Modified **Emulsions** Evaluating performance-based emulsion tests

Midwestern PPP Meeting October 28, 2009, Schaumburg, IL

Outline

Background / Objectives of Study

- ✓ Tasks & Findings
 - Literature Review
 - Industry Survey & Outreach
 - Strawman specifications & Field Trials
 - Recommendations & Final Report
- Conclusions / What's Next

Objectives/Need for Study

<u>No national standards</u> exist within a single document to guide practitioners on the use of polymer modified asphalt emulsions
 The currently measured physical & chemical properties of emulsions do <u>not</u> always correlate with performance.
 Encourage level "playing field" for producers

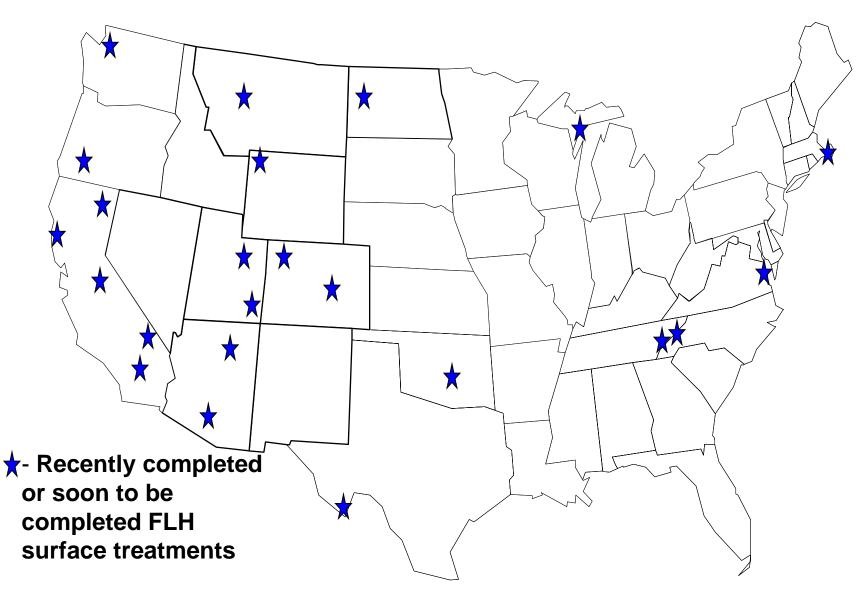
Objectives/Need for Study

Address cost/benefit of polymer modification

Address parking lots & biking trails
 Address climate extremes for FLH

In brief, FLH desired guidance on <u>when,</u> <u>where, how, and why</u> to use polymer modified asphalt emulsions.

Climate **Extremes**


Death Valley N.P.

10

Bryce Canyon N.P.

Information Gap – No climatic grading system or guidance for emulsions

National Center for Pavement Preservation

Objectives/Need for Study Research Needs

 Pavement Preservation Research Roadmap needs: Materials 05: "Performance Grading System for Asphalt Emulsions"

- TRB Research Needs Statement
 - Pavement Preservation Committee AHD18
 - Support from General Issues in Asphalt Committee (AFK10)

Research Needs Total in the Millions of Dollars

Background of Study

✓ Scope

- Use of polymer modified asphalt emulsions in surface treatment applications:
 -Chip Seals
 -Slurry Seals (micro-surfacing)
 - -Cape Seals
- Strawman specification and field trials primarily focused on rheology (testing on residue)

Background of Study

Principle Investigators:

- National Center for Pavement Preservation (NCPP), Larry Galehouse
- GHK, Inc. is a sub-consultant (Gayle and Helen King)

GHK, Inc.

Lab Testing Services: PRI

Background of Study

 Technical Panel Includes: AEMA, FHWA, & Suppliers representatives
 Contributors include: Academia, ETGs, Industry, Suppliers

Literature Review

✓ Common polymer dosage rates: 3 - 5 %

- Unequivocally, PMEs have significant performance benefits over unmodified emulsions
 - Improved elasticity / ductility
 - Improved chip/stone retention
 - Improved high temperature performance

Literature Review

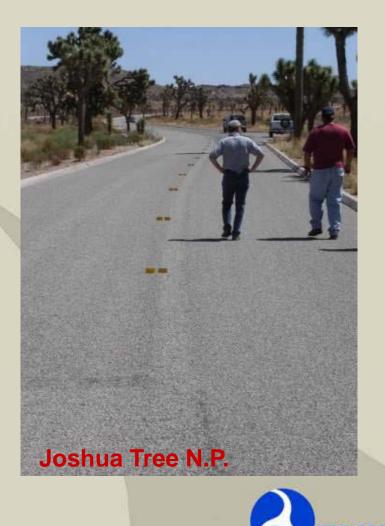
- Non-roadway applications (biking trails, parking lots): No pertinent literature
- Polymer concentration: Formation of continuous polymer network within an PME is critical to optimizing performance benefits
- Most common polymer modification: SBR and SBS
- Benefits of PME likely far outweigh its additional cost.

Industry Survey & Outreach

 Knowledge gathering sessions: Industry, academic, federal & local government agencies

On-line user/ producer survey

 Presentations & input: AEMA/ARRA/ISSA, TRB, ETGs, AASHTO, PPPs


Goals of the On-Line Survey

Solicit industry and agency input

COD

al Center for Pavement Preservation

- To create a framework for performance-based asphalt emulsion specifications
- Validate and/or influence direction of specifications/testing

- Approved Supplier Certification Program
 Residue Recovery Methods
 Emulsion Specification Tests
 Emulsion Residue Specifications
 Application-Specific Performance-Related Specifications
- Construction/Acceptance

Survey Primary Recommendations

Approved Supplier Certification program Reduce shipping & construction delays Update AASHTO T-59 & ASTM D-244

- Adopt a low temperature residue recovery method
- Revise emulsion viscosity method
 - Lab test: Brookfield or paddle method
 - Field acceptance test

Survey Primary Recommendations

Residue performance-graded specifications

- Superpave binder tests preferred
- Aging: Use PAV, do not use RTFO
- Need performance-related tests for applications
 - Must include aggregate
 - Evaluate cure time to traffic
- Aggregate testing important

Strawman Specification Emulsion Residue Recovery & Testing

Purpose	Test	Conditions	Report			
Residue Recovery	Forced Draft Oven	24 hrs @ambient + 24 hrs @60°C	✓% Residue			
Tests on Residue from Forced Draft Oven						
High Temperature (Rutting/Bleeding)	DSR-MSCR DSR freq sweep	T _h T _h	✓J _{nr} ✓G* & phase angle			
Polymer Identifier (Elasticity/Durability)	DSR-MSCR	T _h @3200 Pa	√% Recoverable Strain			
High Float Identifier (Bleeding)	DSR - non-linearity	T _h	✓ Test to be developed			
Tests on PAV after Forced Draft Oven Residue						
Low Temperature (Aged Brittleness)	DSR freq sweep	10 & 20º C Model low T	✓G* ✓Phase Angle			
Polymer Degradation (Before/After PAV)	DSR-MSCR	T _h @3200 Pa	✓Recoverable Strain Ratio			
T - bish never ent temp. DCD - dunemis deservates						

 T_h = high pavement temp; DSR = dynamic shear rheometer

MSCR = multiple stress creep recovery

Emulsion Residue Recovery

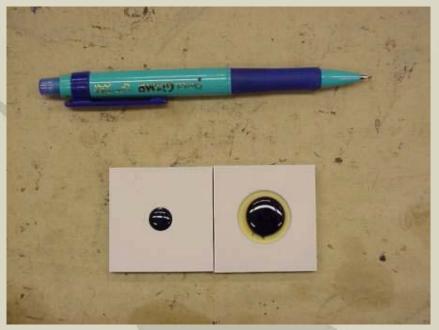
Forced Draft Oven (FDO) Method: ASTM D7497 - 09

- Standard Practice for Recovering Residue from Emulsified Asphalt Using Low Temperature Evaporative Technique
- 24 hour ambient; 24 hour in 60°C oven

TTI evaluating other methods

Residue Performance Test: AASHTO M 316

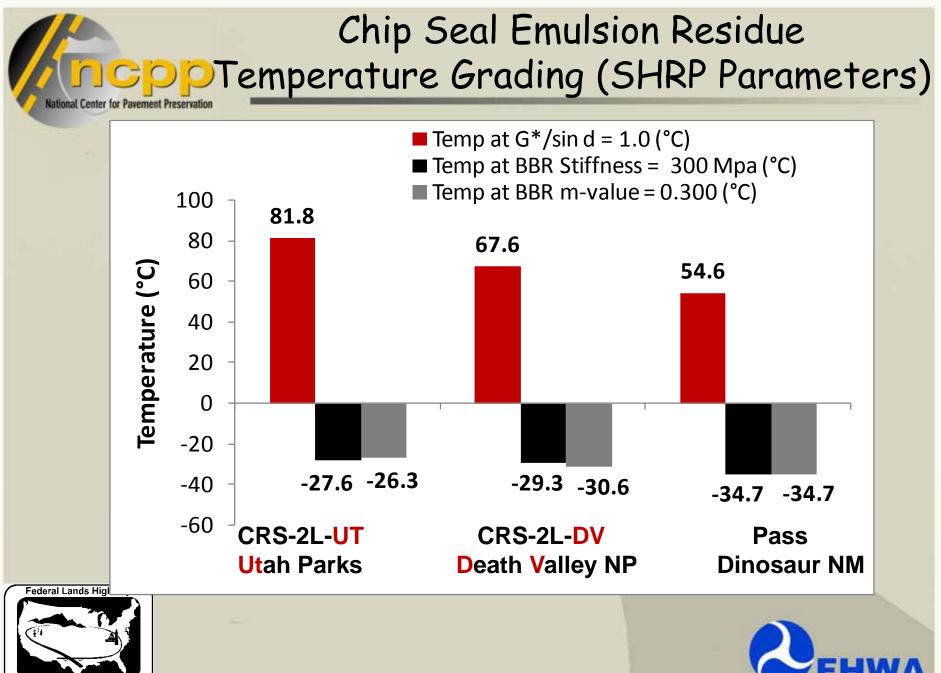
- ✓ Penetration 25°C, 100-175 dmm
- ✓ Ductility, 30 cm at 4°C and 125 cm at 25°C
- ✓ Elastic Recovery, 50%
 ✓ Polymer solids content (2.5% minimum)



"One size fits all" specification. No traffic or climate criteria

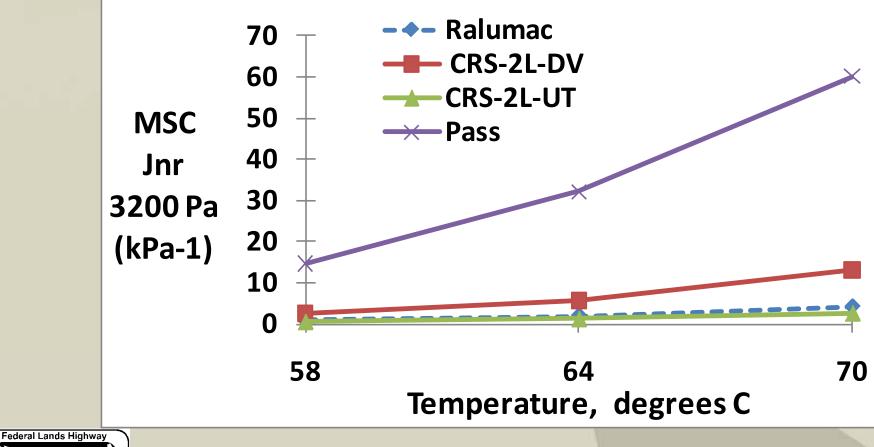
Dynamic Shear Rheometer

ncpp



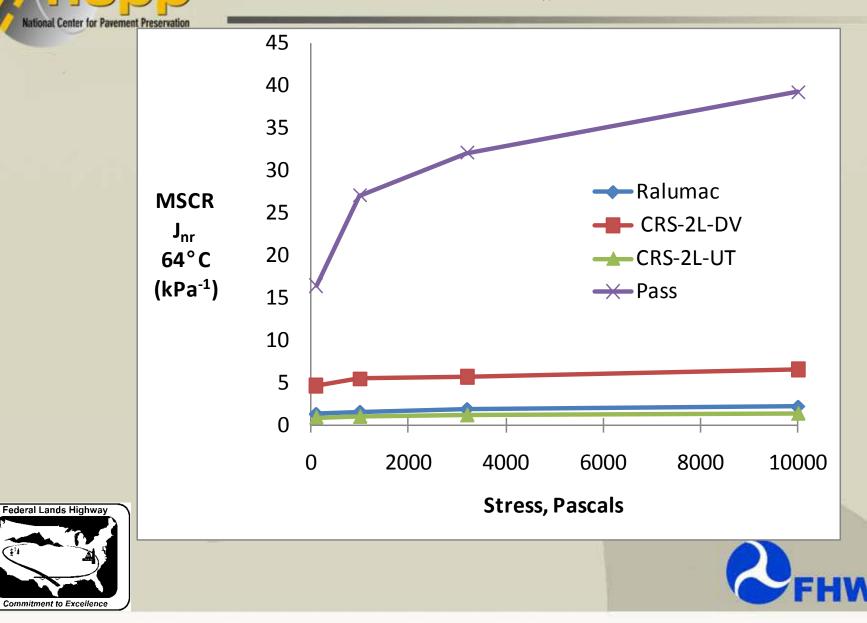
Residue Performance Test: High Temperature Grade

- DSR Frequency Sweep
 G* and phase angle
 Multi-Stress Creep Recovery Test (MSCR)
 J_{nr} (compliance)
- Spec limit determined for each emulsion grade based upon application & traffic
 - Test temperature set by climate
 - 6°C increments from LTPPBind



Commitment to Excellence

MSCR Effect of Temperature on J_{nr} @ 3200 Pa

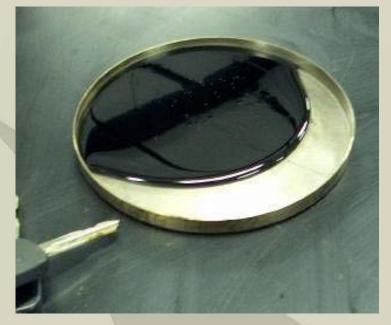


onal Center for Pavement Preservation

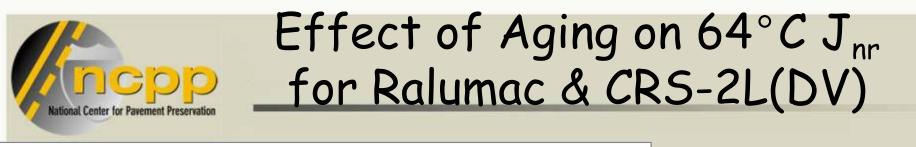
MSCR - J_{nr} vs Stress

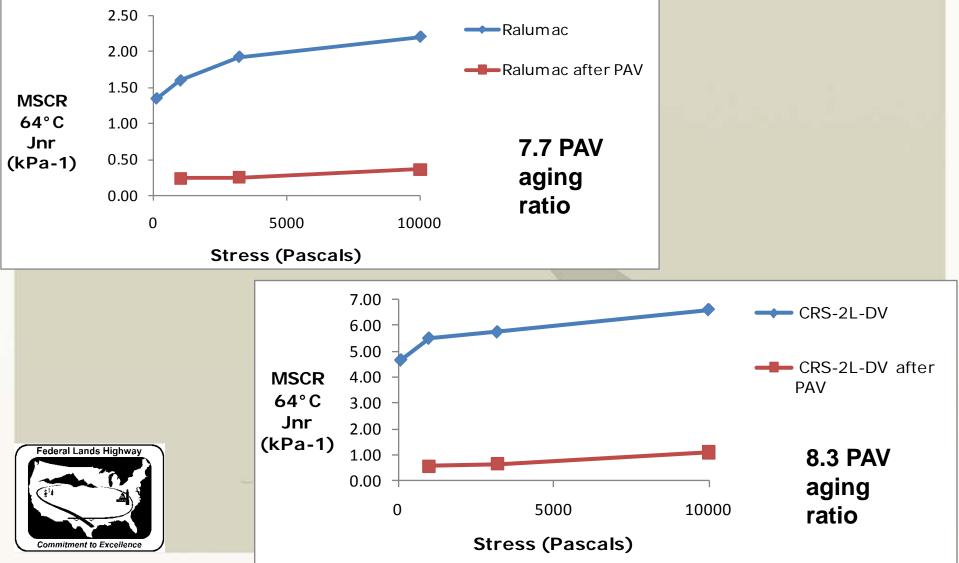
Residue Performance Test: Aging on the Pavement

- PAV Pressure Aging Vessel
 - Emulsion cured in PAV pan per FDO procedure
 - Use standard PAV time & temp for climate


No Hot Mix Plant - No RTFO

Pressure Aging Vessel (PAV)




Commitment to Excellence

Federal Lands Highway

ncop

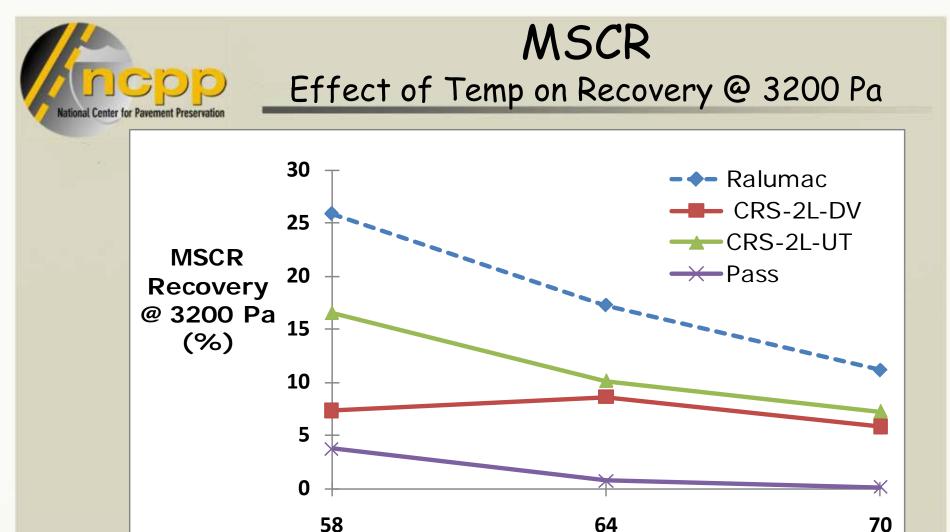
lational Center for Pavement Preservation

National Center for Pavement Preservation

Residue Performance Test: Low Temperature Grade

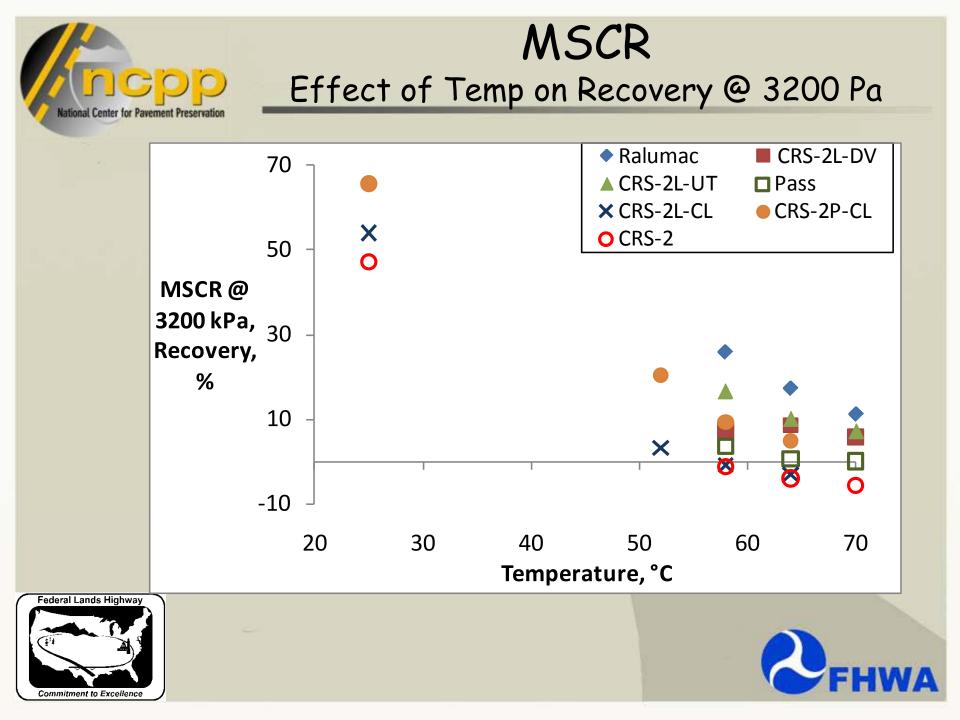
- ✓ DSR Frequency Sweep
 - \blacksquare Determine G* and δ after PAV
- Spec limit set by application & traffic
- Alternative methods:
 - Intermediate temperature test with CAM model extrapolation
 - T_L+10°C using 4-mm plates
- Climate temperature from LTPPBind

Note: replaces BBR


Residue Performance Test: Polymer Elasticity

Multi-Stress Creep Recovery Test (MSCR)

Determine % recovered strain

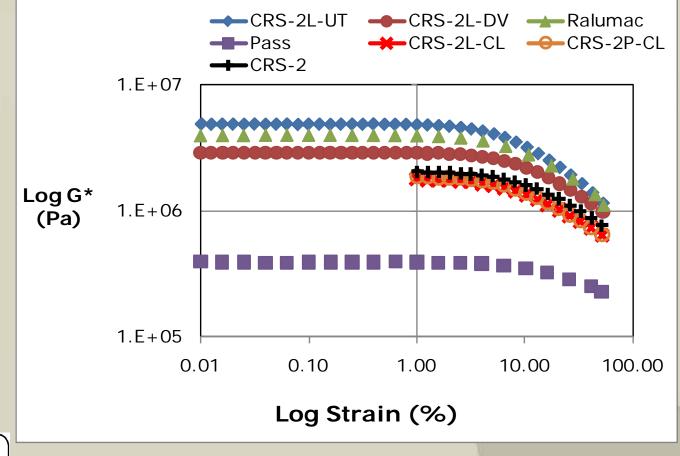


Temperature (°C)

Residue Performance-Related Test: Chip Loss

Cohesive failure

- Ambient temperature shelling
 - DSR Strain Sweep


Determine strain for given % modulus loss
 Test before & after PAV aging

- Low temperature snow plow damage
 - Vialit Pendulum ???
- Adhesive failure dry & wet
 - Needs R&D

Strain Sweeps on PME Residues

tional Center for Pavement Preservation

Performance-Related Test: Chip Seal - Cure Time for Traffic

Sweep Test - ASTM D7000

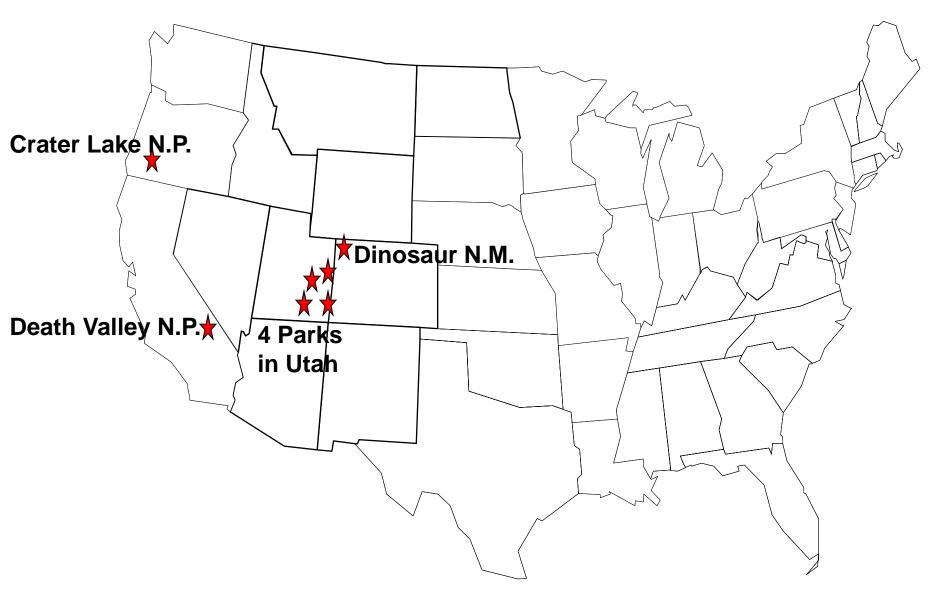
Standard Test Method for Sweep Test of Bituminous Emulsion Surface Treatment Samples

Federal Lands Highway

Center for Pavement Preservation

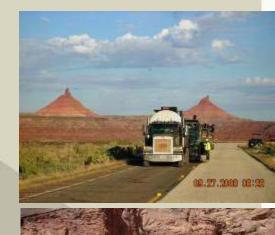
Performance-Related Test: Chip Seal - Cure Time for Traffic

Sweep Test - Modified ASTM D7000 Results


	Mass Loss (%)					
Project / Emulsion	Test Lab	Average	STD	Range		
Arches /CRS-2L-UT	BASF	11.1 %	2.0	5.3		
Arches /CRS-2L-UT	Paragon	16.5 %	0.4	0.9		
Arches /CRS-2L-UT	PRI	13.1 %	1.0	2.4		
Arches /CRS-2L-UT	Ave.	13.5 %	2.7	5.4		
Death Valley /CRS-2L-DV	BASF	9.7 %	1.5	3.2		
Death Valley /CRS-2L-DV	PRI	11.9 %	1.1	3.0		
Death Valley/CRS-2L-DV	Ave.	10.8 %	0.2	1.1		
Dinosaur/ Pass	PRI	Insufficient curing @ 2	hrs, all c	hips lost		

onal Center for Pavement Preservation

Surface Treatment Project Locations – For Evaluating Strawman Specifications



Utah Parks - Construction

✓ 90 miles total 9/6/08 - 10/17/08

- Arches & Canyonlands Nat'l Parks,
- Natural Bridges & Hovenweep Nat'l Monuments
- Chip Seal 1,140,000 sy (fogged)
 - CRS-2L (SBR latex modified)
- Microsurfacing 60,000 sy
 - Natural latex modified Ralumac®

Utah Parks - Performance

Arches National Park chip seal test section:
1800-2000 ADT in the spring & summer
Pre-existing condition: transverse cracking

Milepost	Cracking	Raveling	Flushing/
(location)	(unsealed)	(loss of chips)	Bleeding
2.76	27 feet	None	390 sq ft
(Rt 10)	(3%)		(3.5%)

Utah Parks - Performance Arches National Park

Canyonlands National Park chip seal test section: Pre-existing condition – good

Milepost	Cracking	Raveling	Flushing/
(location)	(unsealed)	(loss of chips)	Bleeding
8.84 (R† 11)	None	None*	Very minor

*Some snow plow scrapes at centerline.

Utah Parks – Performance Canyonlands National Park

NCPP

Vational Center for Pavement Preservation

Utah Parks - Performance Micro-surfacing

CPP

ational Center for Pavement Preservation

14

National Center for Pavement Preservation

Utah Parks - Performance

Other Observations:

- Fog seal has worn off surface of aggregates
- Bleeding at most intersections within Park
- Some raveling of the micro-surfacing
- Snow plow damage and scrapes were noted

National Center for Pavement Preservation

Dinosaur National Monument

✓ 11.4 miles - 9/23/08 - 9/30/08

- ✓ Chip seal 135,000 sy
 - Neoprene modified emulsion, PASS®

✓ Test plan:

- PRI: emulsion & aggregates
- CFLHD Lab: acceptance testing only

Dinosaur National Monument chip seal test section:

 Pre-existing condition: very good; 2-year old pavement

Milepost	Cracking	Raveling	Flushing/
(location)		(loss of chips)	Bleeding
Park Entrance (Rt 10)	None	Very minor (not in wheel paths)	None

ncpp

National Center for Pavement Preservation

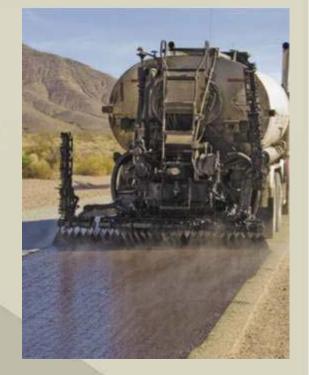
PHWA

ncpp

National Center for Pavement Preservation

Other Observations:

- Fog seal has worn off surface of aggregates
 Some minor bleeding at intersections within
- Park✓ Chips were easily
- dislodged by fingers
- Residue asphalt not as "stretchy" as ARCH and CANY


Death Valley National Park

13 miles - 11/11/08 - 11/14/08 Chip seal - 161,400 sy SBR latex modified CRS-LM

✓ Test plan:

GOO

- PRI: emulsion & aggregates
- Paragon: emulsion & aggregates
- BASF: emulsion & aggregates
- CFLHD Lab: acceptance testing only

National Center for Pavement Preservation

Crater Lake National Park

✓ 23 miles chip seal

- Summer 2009
- **367,000 sy**
- ✓ SB/S modified CRS-2P (1 or 2 tankers) SBR modified CRS-2L on remainder

🗸 Test Plan

- PRI, Paragon, BASF, Kraton Polymers, Ultrapave: emulsion & aggregates
- WFLHD Lab: acceptance testing only

 Polymer modified asphalt emulsions should be used for surface treatments (chip, slurry, micro) for all traffic and climate conditions

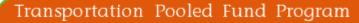
- Pursue performance based specifications as opposed to specifying polymer percentages
- Adopt low temperature residue recovery method

Recommendations

Continue validating strawman specifications
 Test methods & field performance

Further Investigation Needs

- Critical limit for J_{nr}
- Optimum test temperatures & operating conditions for MSCR recovery
- Use of DSR for determining low temperature properties
- Improve inter-lab agreement with Sweep Test



Development of Transportation Pooled Fund Study

To further the numerous research projects underway and to support the Emulsion Task Force with specification development, it is suggested that a Transportation Pooled Fund Study (TPF) be developed.

Development of Transportation Pooled Fund Study

✓ The Need...

- Validation of lab testing protocol with field performance
- Refinement of testing methodology
- Better establish failure mechanisms and validate tests that will predict premature failure
- If a TPF study is not set up to validate and support spec development...who will??

Development of Transportation Pooled Fund Study

✓ The Current Support...

PP ETG's Emulsion Task Force (customer)
 Pavement Preservation Research Roadmap, TRB
 Industry (technical input)
 FHWA Office of Asset Management (\$20k)
 FHWA Federal Lands Division (\$20k)

- Need Support of at least 8 to 10 State DOT's with commitment of \$20k or more
- Is a State willing to lead or co-lead effort?

Thank You. michael.voth@dot.gov

