The Rebirth of Chip Sealing in Minnesota

Roger C. Olson, P.E.

Minnesota DOT

Office of Materials and Road Research

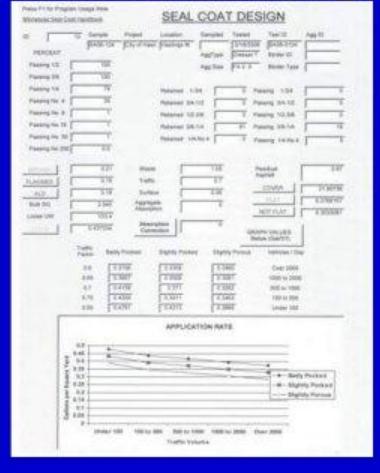
The Issues

- In the early 1990's chip seal performance was very unpredictable.
 - Large amount of aggregate loss
 - Bleeding
 - Vehicle damage
 - Cost overruns
 - Average chip seal life was 5 to 7 years

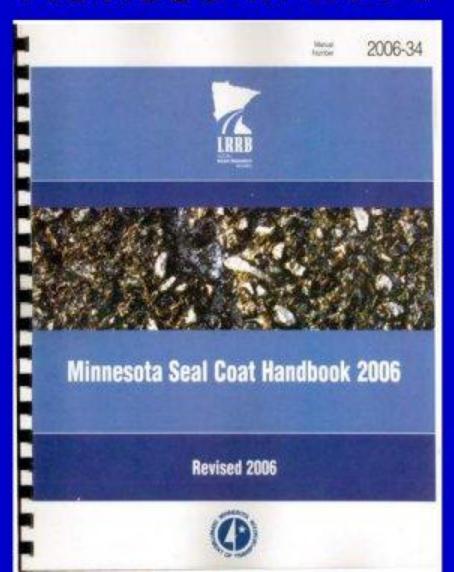
LRRB funded a study of Chip Seals.

Mn/DOT adopted a modified McLeod design

- Determined amount of aggregate needed to cover 1 sq/y one stone deep
- Increased aggregate embedment depth from 50% to 60% - 65%


Seal Coat Design Summary

- Design for FA-3 (3/8") Chip
 - Previous Average (No Design):
 - 30 lbs/yd² Aggregate
 - 0.30 gal/yd² Binder
 - Current Average (With Design):
 - 17 lbs/yd² Aggregate
 - 0.42 gal/yd² Binder


"One state that adopted Mn/DOT's design method reported a \$1 million savings in aggregate costs the first year"

Mn/DOT's Design Method

http://www.mrr.dot.state.mn.us/research/MnROAD _Project/restools/sealcoatprogram.asp

Originally Published in 1997 Revised in 2006

Current Mn/DOT Special Provisions

- Requires use of CRS-2p emulsion
- Clean aggregate
- Proper methods
 - Minimum time between application of binder and aggregate (< 1 minute)
 - 3 rollers with minimum of 3 passes
- Chips shall be swept day of construction
 - Before traffic control is lifted

Current Mn/DOT Special Provisions

- Contractor responsible for all vehicle damage.
- All chip seals on State routes shall be fog sealed.
 - No earlier than the next morning.
 - Css-1h diluted 1:1 at place of manufacture is required for fog seal.
 - Shoulders + Rumble Strips too!

Mn/DOT Special Provisions were re-written in 2001

- Old pay items
 - Tons aggregate
 - Gallons of binder
- New pay item
 - Gallons of binder
 - Square yards of chip seal applied
 - Pay for aggregate, application, sweeping, etc.

Outcome

- Many Agencies in MN have started to chip seal or increased their use of chip sealing.
- Average age of roadway to receive first chip seal application is 5 years
- The average size of chip used has increased from ¼" chip to 100 percent passing %".
- Maximum allowable traffic for placing chip seals increased from 500 - 1000 ADT to as high as 15,000+/- ADT.
- Average life of chip seals has increased from 5 7 years to 10 - 15 years.

What the Traveling Public Sees!

Minnesota State Animal The Gopher

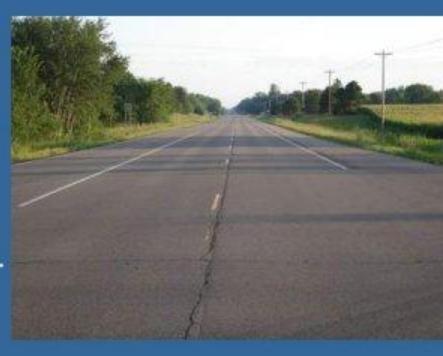
14th Annual Minnesota Pavement Conference February 11, 2010

Minnesota Highway 25 Modified Emulsion Chip Seal Trial

Presentation to Midwestern Pavement Preservation Partnership Annual Meeting – October 26-29, 2009

Arlis Kadrmas

Project Description Why?



- CRS-2P (CRS made using a modified asphalt base) is the only acceptable modified CRS utilized by MNDOT and has proven performance
- Compare CRS-2L (CRS made by co-milling latex into the emulsified asphalt) with the CRS-2P
- If the performance is acceptable, provide an option to MNDOT for modified seal coat projects

Project Highlights Location

- One mile section of US25 near Becker, Minnesota was used for the test sections (MP 82 to near MP 83)
- Northbound lane utilized CRS-2L (Latex based CRS emulsion)
- Southbound lane utilized CRS-2P (Polymer modified asphalt based CRS emulsion)

Project Highlights Materials & Construction

- Martin Marietta Granite Chip (St. Cloud, MN Quarry)
 - MNDOT FA3 Specification
- CRS-2L (Latex based CRS emulsion) HG Meigs
- CRS-2P (Polymer modified asphalt based CRS emulsion)
 Jebro, Inc.
- Emulsion Shot Rate 0.35 gal/yd² for both emulsions
- Pavement Temperature 82°F 101°F during construction

Pictures During Application

Emulsion Application

Aggregate (Chip) Application

Traditional Residue Testing Elastic Recovery and Penetration

ASTM D6934 - Residue by Oven Evaporation

				CRS-2L	CRS-2P
Sample #	3278	3279			
ER 10C SS 20cm 5mn, %	103	T 301	58 min	78.8	78.8
ER 10C SS 20cm 5mn, %	103	T 301	58 min	73.8	77.5
ER 10C SS 20cm 5mn, %	103	T 301	58 min	72.5	78.8
AVO	ÿ.			73.1	78.1
Pen 25°C, dmm	106	T49	60 - 150	93	101

Rheological Testing – Traditional DSR Low Temperature Evaporation Procedure

ASTM D7497 – Low Temperature Evaporation Procedure

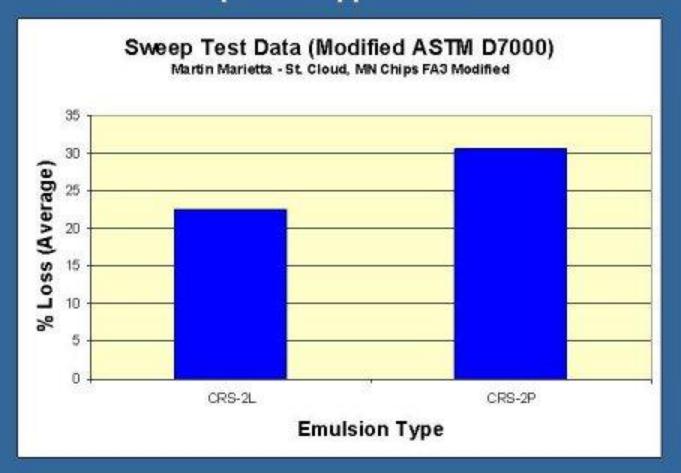
			3280 ltr	3281 ltr	
Tests on unaged material:	°C	Spec Limit	AUT-W301		
Phase Angle (delta)	52		72.0	65.4	
G */sin delta @ 10 rad/sec,kPa	52	1.0 min.	11.47	9.10	
Phase Angle (delta)	58	,	74.1	67.4	
G */sin delta @ 10 rad/sec,kPa	58	1.0 min.	5.65	4.62	
Phase Angle (delta)	64		75.6	70.1	
G */sin delta @ 10 rad/sec,kPa	64	1.0 min.	2.95	2.48	
Phase Angle (delta)	70		76.1	73.0	
G*/sin delta @ 10 rad/sec,kPa	70	1.0 min.	1.60	1.40	
Phase Angle (delta)	76		75.8	75.5	
G */sin delta @ 10 rad/sec,kPa	76	1.0 min.	0.91	0.82	
Pass / Fail Temperature		9	75.0	73.8	

Rheological Testing – MSCR ASTM D7497 Residue Recovery Method

CRS-2L (Latex Modified Specimen)

Temperature (58°C)	100 Pa	3200 Pa
Total Average Creep Strain	0.15548	5.7443
Total Average Non Recoverable Strain	0.08155	4.5275
Percent Recovery	48%	21%
Difference in Percent Recovery		55%
Non Recoverable Compliance (Jnr) (kPa ⁻¹)	0.816	1.415
Percent Difference in Jnr		42%

Rheological Testing – MSCR ASTM D7497 Residue Recovery Method


CRS-2P (Polymer Modified Asphalt Specimen)

Temperature (58°C)	100 Pa	3200 Pa
Total Average Creep Strain	0.15187	5.6865
Total Average Non Recoverable Strain	0.078235	4.4454
Percent Recovery	48%	22%
Difference in Percent Recovery		55%
Non Recoverable Compliance (Jnr) (kPa ⁻¹)	0.782	1.389
Percent Difference in Jnr		44%

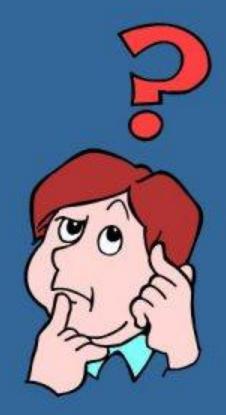
Sweep Test Data ASTM D7000 - Modified

Modified – Specimen cured for 2 hours at 35°C and emulsion stored at 60°C prior to application

Pictures After Chip Application and During Fog Seal Application

Final Seal Coat Application

Fog Seal Application



Evaluation Process

- Application
- Rolling
- Release to traffic
- Chip retention after winter
- Snow Plow Damage
- Flushing/Bleeding Evaluation

Questions?

